日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在?ABCD中,E、F分別是AB、CD的中點(diǎn),連接AF、CE.
          (1)求證:△BEC≌△DFA;
          (2)連接AC,當(dāng)CA=CB時(shí),判斷四邊形AECF是什么特殊四邊形?并證明你的結(jié)論.如圖2,E,F(xiàn)是平行四邊形ABCD的對(duì)角線AC上的點(diǎn),CE=AF. 請(qǐng)你猜想:BE與DF有怎樣的位置關(guān)系和數(shù)量關(guān)系?并對(duì)你的猜想加以證明.
          分析:(1)由在?ABCD中,E、F分別是AB、CD的中點(diǎn),利用SAS即可判定:△BEC≌△DFA;
          (2)易證得四邊形AECF是平行四邊形,又由CA=CB,E是AB的中點(diǎn),解得CE⊥AB,繼而證得四邊形AECF是矩形;
          易證得△ADF≌△CBE,則可證得BE=DF,BE∥DF.
          解答:(1)證明:∵四邊形ABCD是平行四邊形,
          ∴AB=CD,AD=BC,∠B=∠D,
          ∵E、F分別是AB、CD的中點(diǎn),
          ∴BE=
          1
          2
          AB,DF=
          1
          2
          CD,
          在△BEC和△DFA中,
          BC=DA
          ∠B=∠D
          BE=DF

          ∴△BEC≌△DFA(SAS);

          (2)四邊形AECF是矩形.
          證明:∵四邊形ABCD是平行四邊形,
          ∴AB∥CD,AB=CD,
          ∵BE=DF,
          ∵AE=CF,
          ∴四邊形AECF是平行四邊形,
          ∵CA=CB,E是AB的中點(diǎn),
          ∴CE⊥AB,
          ∴∠AEC=90°,
          ∴平行四邊形AECF是矩形.

          猜想:BE=DF,且BE∥DF;
          證明:∵四邊形ABCD是平行四邊形,
          ∴BC=AD,AD∥BC,
          ∴∠DAF=∠BCE,
          在△ADF和△CBE中,
          AD=CB
          ∠DAF=∠BCE
          AF=CE
          ,
          ∴△BCE≌△DAF(SAS).
          ∴BE=DF,∠AFD=∠CEB.
          ∴BE∥DF.
          ∴BE=DF,且BE∥DF.
          點(diǎn)評(píng):此題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì)以及矩形的判定.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
          3

          (1)求線段AB的長(zhǎng);
          (2)如圖2,點(diǎn)E為線段AB的中點(diǎn),過(guò)點(diǎn)E的直線FG與CB的延長(zhǎng)線交于點(diǎn)F,與射線AD交于點(diǎn)G,連接OE,以O(shè)E所在直線為對(duì)稱軸,△OEF經(jīng)軸對(duì)稱變換后得到△OEF′,記直線EF′與射線AD的交點(diǎn)為H.
          ①當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求證:△AEG∽△AHE;
          ②若HG=6,求AG的長(zhǎng).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          探究規(guī)律:
          已知,如圖1,直線m∥n,A、B為直線n上的兩點(diǎn),C、P為直線m上的兩點(diǎn).若A、B、C為三個(gè)定點(diǎn),P為動(dòng)點(diǎn),則
          (1)△PAB與△CAB的面積大小關(guān)系為
           

          (2)請(qǐng)你在圖1中再畫出一個(gè)與△ABC面積相等的△DEF,并說(shuō)明面積相等的理由.
          解決問(wèn)題:
          問(wèn)題1:如圖2,在?ABCD中,點(diǎn)P是CD上任意一點(diǎn),
          則S△PAB
           
          S△ADP+S△BCP(填寫“>”、“<”或“=”).
          問(wèn)題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個(gè)底面為圓形的建筑物,點(diǎn)O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線都過(guò)公路邊(AB)上一點(diǎn)P,請(qǐng)你確定點(diǎn)P的位置,并畫出分割線,說(shuō)明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          23、如圖1,矩形ABCD中,BC=2AB,M為AD的中點(diǎn),連接BM.
          (1)請(qǐng)你判斷并寫出∠BMD是∠ABM的幾倍;
          (2)如圖2,在?ABCD中,BC=2AB,M為AD的中點(diǎn),CE⊥AB,連接EM、CM,請(qǐng)問(wèn):∠AEM與∠DME是否也具有(1)中的倍數(shù)關(guān)系?若有,請(qǐng)證明;若沒(méi)有,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•槐蔭區(qū)一模)(1)已知:如圖1,點(diǎn)A、C、D、B在同一條直線上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

          (2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點(diǎn)E.求證:DA=DE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在?ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn),AD=AE.
          (1)如圖2,點(diǎn)P在線段BE上,作EF⊥DP于點(diǎn)F,連接AF.求證:DF-EF=
          2
          AF;
          (2)請(qǐng)你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EF⊥DP于點(diǎn)F,連接AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案