日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知中,是邊上一點(diǎn),DEBC于點(diǎn),將沿翻折得到,若是直角三角形,則長為________.

          【答案】

          【解析】

          先根據(jù)勾股定理得到AC=5,再根據(jù)平行線分線段成比例得到ADAE=ABAC=45,設(shè)AD=x,則AE=A′E=x,EC=5-x,A′B=2x-4,在RtA′BC中,根據(jù)勾股定理得到A′C,再根據(jù)△A′EC是直角三角形,根據(jù)勾股定理得到關(guān)于x的方程,解方程即可求解.

          解:在△ABC中,∠B=90°BC=3,AB=4
          AC=5,
          DEBC
          ADAB=AEAC,即ADAE=ABAC=45
          設(shè)AD=x,則AE=A′E=x,EC=5-x,A′B=2x-4,
          RtA′BC中,A′C=,
          ∵△A′EC是直角三角形,
          ∴①當(dāng)A'落在邊AB上時,∠EA′C=90°,∠BA′C=ACB,A′B=3×tanACB=,AD=;
          ②點(diǎn)A在線段AB的延長線上
          解得x1=4(不合題意舍去),x2=
          AD長為
          故答案為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一次羽毛球賽中,甲運(yùn)動員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動軌跡PAN看作一個拋物線的一部分,當(dāng)球運(yùn)動到最高點(diǎn)A時,其高度為3米,離甲運(yùn)動員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動員站立地點(diǎn)M的坐標(biāo)為(m,0.

          1)求拋物線的解析式(不要求寫自變量的取值范圍);

          2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長);

          3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,?/span>m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC≌△ABD,點(diǎn)E在邊AB上,CE∥BD,連接DE

          求證:1∠CEB=∠CBE

          2)四邊形BCED是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半徑為10的⊙中,弦所對的圓心角分別是,,若,,則弦的長等于(  )

          A. 18B. 16C. 10D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】問題背景:

          如圖①,在四邊形ADBC中,∠ACB=ADB=90°AD=BD,探究線段ACBC,CD之間的數(shù)量關(guān)系.

          小吳同學(xué)探究此問題的思路是:將BCD繞點(diǎn)D,逆時針旋轉(zhuǎn)90°AED處,點(diǎn)BC分別落在點(diǎn)A,E處(如圖②),易證點(diǎn)C,A,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結(jié)論:AC+BC=CD

          簡單應(yīng)用:

          1)在圖①中,若AC=2,BC=4,則CD=

          2)如圖③,AB是⊙O的直徑,點(diǎn)C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.

          拓展規(guī)律:

          3)如圖4,ABC中,∠ACB=90°,AC=BC,點(diǎn)PAB的中點(diǎn),若點(diǎn)E滿足AE=AC,CE=CA,且點(diǎn)E在直線AC的左側(cè)時,點(diǎn)QAE的中點(diǎn),則線段PQAC的數(shù)量關(guān)系是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知在ABC中,∠BAC>90°,點(diǎn)DBC的中點(diǎn),點(diǎn)EAC上,將CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。

          A. AE=EF B. AB=2DE

          C. ADFADE的面積相等 D. ADEFDE的面積相等

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某班數(shù)學(xué)興趣小組對函數(shù)yx22|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下:

          (1)自變量x的取值范圍是 ,xy的幾組對應(yīng)值列表如下:

          x

          3

          2

          1

          0

          1

          2

          3

          y

          3

          0

          1

          0

          1

          0

          3

          2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該圖象的另一部分并觀察函數(shù)圖象,寫出該函數(shù)的兩條性質(zhì).

          (3)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):關(guān)于x的方程2x24|x|a4個實(shí)數(shù)根,則a的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

          (1)求此反比例函數(shù)的表達(dá)式;

          (2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,ABC為等腰三角形,AB=AC=a,P點(diǎn)是底邊BC上的一個動點(diǎn),PDAC,PEAB

          ⑴用a表示四邊形ADPE的周長為

          ⑵點(diǎn)P運(yùn)動到什么位置時,四邊形ADPE是菱形,請說明理由;

          ⑶如果ABC不是等腰三角形(2),其他條件不變,點(diǎn)P運(yùn)動到什么位置時,四邊形ADPE是菱形(不必說明理由)

          查看答案和解析>>

          同步練習(xí)冊答案