日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,Rt△ABC中,AC=BC=8,∠ACB=90º,直角邊AC在x軸上,B點在第二象限,A(2,0),AB交y軸于E,將紙片過E點折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點開始沿射線EA平移,至B點到達A點停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形B1C1F1E1與△AEF重疊的面積為S.

          (1)求折痕EF的長;

          (2)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取 值范圍.

          (3)若四邊形BCFE平移時,另有一動點H與四邊形BCFE同時出發(fā),以每秒個單位長度從點A沿射線AC運動,試求出當(dāng)t為何值時,△HE1E為等腰三角形?

           

          【答案】

          (1)(2) ()(3)或2

          【解析】

          試題分析:1)∵折疊后BE與EA所在直線重合

          ∴EF⊥EA

          又Rt△ABC中AC=BC

          ∴∠CAB=45°

          ∴EF=EA

          ∵A(2,0) 

          ∴OA=OE=2 , AE=                            

          ∴折痕EF=   

          (2)

             ()

          S=4    ()

            ()

           (

          (3)

          當(dāng)E1E=EE1

          4t2-8

          ∴t=

          當(dāng)E1E=EH時,

          當(dāng)E1H=EH時

              或0

          綜上:或2

          考點:二次函數(shù)的綜合題

          點評:此題將用待定系數(shù)法求二次函數(shù)解析式、動點問題和最小值問題相結(jié)合,有較大的思維跳躍,考查了同學(xué)們的應(yīng)變能力和綜合思維能力,是一道好題.

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個三角形,且要求其中一個三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
          34
          ,D是BC點邊上一點,DE⊥AB于E,CD=DE,AC+CD=18.
          (1)求BC的長(2)求CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點D、E、F.
          (1)若BC=40cm,AB=50cm,求⊙0的半徑;
          (2)若⊙0的半徑為r,△ABC的周長為ι,求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
          (1)求sinα的值; 
          (2)求AD的長.

          查看答案和解析>>

          同步練習(xí)冊答案