日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB是⊙O的直徑,過點B作⊙O的切線BM,弦CD∥BM,交AB于點F,且=,連接AC,AD,延長AD交BM于點E.

          (1)求證:△ACD是等邊三角形.
          (2)連接OE,若DE=2,求OE的長.

          【答案】
          (1)

          證明:∵AB是⊙O的直徑,BM是⊙O的切線,

          ∴AB⊥BE,

          ∵CD∥BE,

          ∴CD⊥AB,

          =

          =,

          ==,

          ∴AD=AC=CD,

          ∴△ACD是等邊三角形;


          (2)

          解:連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,

          ∴∠DAC=60°

          ∵AD=AC,CD⊥AB,

          ∴∠DAB=30°,

          ∴BE=AE,ON=AO,

          設(shè)⊙O的半徑為:r,

          ∴ON=r,AN=DN=r,

          ∴EN=2+,BE=AE=,

          在Rt△NEO與Rt△BEO中,

          OE2=ON2+NE2=OB2+BE2

          即(2+(2+2=r2+,

          ∴r=2,

          ∴OE2=+25=28,

          ∴OE=2


          【解析】(1)由AB是⊙O的直徑,BM是⊙O的切線,得到AB⊥BE,由于CD∥BE,得到CD⊥AB,根據(jù)垂徑定理得到=,于是得到==,問題即可得證;
          (2)連接OE,過O作ON⊥AD于N,由(1)知,△ACD是等邊三角形,得到∠DAC=60°又直角三角形的性質(zhì)得到BE=AE,ON=AO,設(shè)⊙O的半徑為:r則ON=r,AN=DN=r,由于得到EN=2+,BE=AE=,在Rt△DEF與Rt△BEO中,由勾股定理列方程即可得到結(jié)論.
          此題考查了圓的綜合應(yīng)用以及等邊三角形的判定與性質(zhì)和切線的性質(zhì)以及勾股定理的應(yīng)用.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD中,AB=6cm,BC=8cm,若將矩形對角線BD對折,使B點與D點重合,四邊形EBFD是菱形嗎?請說明理由,并求這個菱形的邊長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,O為原點,直線y=kx+b交x軸于A(﹣3,0),交y軸于B,且三角形AOB的面積為6,則k=(  )

          A. B. C. ﹣4或4 D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一家商店進(jìn)行裝修,若請甲、乙兩個裝修組同時施工,8天可以完成,需付給兩組費用共3520元;若先請甲組單獨做6天,再請乙組單獨做12天可以完成,需付給兩組費用共3480元,問:

          (1)甲、乙兩組單獨工作一天,商店應(yīng)各付多少元?

          (2)已知甲組單獨完成需要12天,乙組單獨完成需要24天,單獨請哪組,商店應(yīng)付費用較少?

          (3)若裝修完后,商店每天可盈利200元,你認(rèn)為如何安排施工有利用商店經(jīng)營?說說你的理由.(可以直接用(1)(2)中的已知條件)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標(biāo)為A(m,2).

          (1)求m的值和一次函數(shù)的解析式;

          (2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

          (3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點,(點A在點B的左側(cè)),與直線AC交于點C(2,3),直線AC與拋物線的對稱軸l相交于點D,連接BD.

          (1)求拋物線的函數(shù)表達(dá)式,并求出點D的坐標(biāo);
          (2)如圖2,若點M、N同時從點D出發(fā),均以每秒1個單位長度的速度分別沿DA、DB運動,連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當(dāng)運動時間t為何值時,點D′恰好落在x軸上?
          (3)在平面內(nèi),是否存在點P(異于A點),使得以P、B、D為頂點的三角形與△ABD相似(全等除外)?若存在,請直接寫出點P的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:①CE=CF;②線段EF的最小值為2 ;③當(dāng)AD=2時,EF與半圓相切;④若點F恰好落在 上,則AD=2 ;⑤當(dāng)點D從點A運動到點B時,線段EF掃過的面積是16 .其中正確結(jié)論的序號是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.
          (1)求證:△DOE≌△BOF;
          (2)當(dāng)∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】曲靖市某商場投入19200元資金購進(jìn)甲、乙兩種飲料共600箱,飲料的成本價和銷售價如表所示:

          類別/單價

          成本價

          銷售價(元/箱)

          24

          36

          36

          52

          (1)該商場購進(jìn)甲、乙兩種飲料各多少箱?

          (2)全部售完600箱飲料,該商場共獲得利潤多少元?

          查看答案和解析>>

          同步練習(xí)冊答案