日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線l1⊥x軸于點A(2,0),點B是直線l1上的動點.直線l2:y=x+1交l1于點C,過點B作直線l3垂直于l2,垂足為D,過點O,B的直線l4交l2于點E,當直線l1,l2,l3能圍成三角形時,設(shè)該三角形面積為S1,當直線l2,l3,l4能圍成三角形時,設(shè)該三角形面積為S2
          (1)若點B在線段AC上,且S1=S2,則B點坐標為    ;
          (2)若點B在直線l1上,且S2=S1,則∠BOA的度數(shù)為   
          【答案】分析:(1)設(shè)B的坐標是(2,m),則△BCD是等腰直角三角形,即可表示出S1,求得直線l1的解析式,解方程組即可求得E的坐標,則S2的值即可求得,根據(jù)S1=S2,即可得到一個關(guān)于m的方程從而求得m的值;
          (2)根據(jù)S2=S1,即可得到一個關(guān)于m的方程從而求得m的值,得到AB的長,從而求得∠BOA的正切值,求得角的度數(shù).
          解答:解:(1)設(shè)B的坐標是(2,m),則△BCD是等腰直角三角形.
          BC=|3-m|,
          則BD=CD=BC=|3-m|,S1=×(|3-m|)2=(3-m)2
          設(shè)直線l4的解析式是y=kx,則2k=m,解得:k=
          則直線的解析式是y=x.
          根據(jù)題意得:,解得:
          則E的坐標是(,).
          S△BCE=BC•||=|3-m|•||=
          ∴S2=S△BCE-S1=-(3-m)2
          S1=S2時,-(3-m)2=(3-m)2
          解得:m1=4(不合題意舍去)或m2=0,
          則B的坐標是(2,0);

          (2)當S2=S1時,-(3-m)2=(3-m)2
          解得:m=4+2或4-2
          則AB=4+2或4-2
          ∴tan∠BOA=2+或2-
          ∴∠BOA=75°或15°.
          點評:本題考查了一次函數(shù)與三角函數(shù),三角形的面積,正確表示出S2是關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2012•寧波模擬)如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…,直線ln⊥x軸于點(n,0)(n為正整數(shù)).函數(shù)y=x的圖象與直線l1,l2,l3,…,ln分別交于點A1,A2,A3,…,An;函數(shù)y=2x的圖象與直線l1,l2,l3,…,ln分別交于點B1,B2,B3,…,Bn.如果△OA1B1的面積記作S,四邊形A1A2B2B1的面積記作S1,四邊形A2A3B3B2的面積記作S2,…,四邊形AnAn+1Bn+1Bn的面積記作Sn,那么S1=
          3
          2
          3
          2
          ,S2=
          5
          2
          5
          2
          ,S2012=
          2012
          1
          2
          2012
          1
          2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•張家口一模)如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…直線ln⊥x軸于點(n,0).函數(shù)y=x的圖象與直線l1,l2,l3,…ln分別交于點A1,A2,A3,…An;函數(shù)y=2x的圖象與直線l1,l2,l3,…ln分別交于點B1,B2,B3,…Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…四邊形An-1AnBnBn-1的面積記作Sn,那么S2012=
          2011.5
          2011.5

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•義烏市)如圖,直線l1⊥x軸于點A(2,0),點B是直線l1上的動點.直線l2:y=x+1交l1于點C,過點B作直線l3垂直于l2,垂足為D,過點O,B的直線l4交l2于點E,當直線l1,l2,l3能圍成三角形時,設(shè)該三角形面積為S1,當直線l2,l3,l4能圍成三角形時,設(shè)該三角形面積為S2
          (1)若點B在線段AC上,且S1=S2,則B點坐標為
          (2,0)
          (2,0)
          ;
          (2)若點B在直線l1上,且S2=
          3
          S1,則∠BOA的度數(shù)為
          15°或75°
          15°或75°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,直線l1⊥x軸于點(1,0),直線l2⊥x軸于點(2,0),直線l3⊥x軸于點(3,0),…直線ln⊥x軸于點(n,0).函數(shù)y=
          1
          2
          x的圖象與直線l1,l2,l3,…ln分別交于點A1,A2,A3,…An;函數(shù)y=2x的圖象與直線l1,l2,l3,…ln分別交于點B1,B2,B3,…Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…四邊形An-1AnBnBn-1的面積記作Sn,那么S2012=(  )

          查看答案和解析>>

          同步練習冊答案