日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖①E、F、G、H為正方形ABCD各邊延長線上的點,CE=BC,DF=CD,AG=DA,BH=AB,若正方形ABCD的面積等于1.
          (1)請你求出四邊形EFGH的面積;
          (2)如圖②,圖③,若將正方形ABCD變?yōu)榫匦魏土庑,其他條件仍然不變,請你分別寫出四邊形EFGH的面積.
          (3)如圖④,若將正方形ABCD變?yōu)槿我馑倪呅,其他條件仍然不變,請你猜想四邊形EFGH的面積并說明理由.
          精英家教網(wǎng)
          分析:(1)依題意已知四邊形ABCD的面積為1,可推出BH=BC=1,求得BE=2,S△BEH=1,故同理證得S△AGH=S△DGF=S△FCE=S△BEH=1,故四邊形面積為四個三角形以及一個四邊形的和為5;
          (2)依題意可知矩形ABCD的面積為1,其余四個三角形可證明其兩兩全等,然后根據(jù)(1)的證明方法可證得四邊形EFGH的面積為5;
          (3)依題意可知CE=BC,DF=CD,AG=DA,BH=AB,可證得四個三角形的面積相等,從而得出四邊形的面積.
          解答:解:(1)∵四邊形ABCD的面積等于1,
          ∴BH=BC=1,
          ∴BE=2,
          ∴S△BEH=1,
          同理S△AGH=S△DGF=S△FCE=S△BEH=1,
          ∴四邊形EFGH的面積為5;

          (2)∵矩形ABCD的面積為1,
          ∴CD•BC=1,
          ∵CE=BC,DF=CD,
          ∴S△ECF=
          1
          2
          CE•CF=
          1
          2
          CD•2BC=1,
          同理S△AGH=S△DGF=S△FCE=S△BEH=1,
          ∴四邊形EFGH的面積均為5;

          (3)依題意可知CE=BC,DF=CD,AG=DA,BH=AB,
          故S△AGH=S△DGF=S△FCE=S△BEH=1
          所以四邊形面積仍為5.
          點評:本題考查的是正方形的性質(zhì),考生注意總結(jié)規(guī)律解答題目.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
          8

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知A,B兩點是反比例函數(shù)y=
          4x
          (x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          6、如圖是某幾何體的三視圖,則這個幾何體是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
          (1)求證:DE是⊙O的切線;
          (2)若∠C=30°,CD=
          3
          ,求⊙O的半徑.

          查看答案和解析>>

          同步練習冊答案