日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿線段BC向點(diǎn)C作勻速運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)D 出發(fā),沿線段DA向點(diǎn)A作勻速運(yùn)動(dòng).過(guò)Q點(diǎn)垂直于AD的射線交AC于點(diǎn)M,交BC于點(diǎn)N.P、Q兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度.當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t秒.
          【小題1】求NC,MC的長(zhǎng)(用t的代數(shù)式表示)
          【小題2】當(dāng)t為何值時(shí),四邊形PCDQ構(gòu)成平行四邊形?
          【小題3】當(dāng)t為何值時(shí),射線QN恰好將△ABC的面積平分?并判斷此時(shí)△ABC的周長(zhǎng)是否也被射線QN平分.

          【小題1】∵AQ=3﹣t,
          ∴CN=4﹣(3﹣t)=1+t,
          在Rt△ABC中,AC2=AB2+BC2=32+42,
          ∴AC=5,
          在Rt△MNC中,cos∠NCM===,CM=;(3分)
          【小題2】由于四邊形PCDQ構(gòu)成平行四邊形,
          ∴PC=QD,即4﹣t=t,
          解得t=2,
          則當(dāng)t=2時(shí),四邊形PCDQ構(gòu)成平行四邊形;(6分)
          【小題3】∵NC=t+1,MN=,
          ∴SMNC=×4×3,…(8分)
          ∴(1+t)2=8,
          ∴t1=2﹣1,t2=﹣2﹣1(舍)…(9分)
          ∴當(dāng)t=2﹣1時(shí),△ABC的面積被射線QN平分.…(10分)
          當(dāng)t=﹣2﹣1時(shí),MC+NC=+1+t=(3+4+5),
          ∴此時(shí)△ABC的周長(zhǎng)不被射線QN平分.…(12分)解析:
          (1)依據(jù)題意易知四邊形ABNQ是矩形∴NC=BC﹣BN=BC﹣AQ=BC﹣AD+DQ,BC、AD已知,DQ就是t,即解,然后在直角三角形ABC中,由AB與BC的長(zhǎng)根據(jù)勾股定理可求CA=5,從而得到cos∠NCM==,而cos∠NCM也等于,最后把表示出的CN代入即可表示出CM;
          (2)四邊形PCDQ構(gòu)成平行四邊形,根據(jù)平行四邊形的對(duì)邊相等得到PC=DQ,列出方程4﹣t=t即解;
          (3)根據(jù)QN平分△ABC的面積,得到三角形CMN的面積等于三角形ABC面積的一半,根據(jù)三角形的面積公式,利用表示出的CN與MN的值表示出三角形CMN的面積,讓其等于三角形ABC面積的一半,得到關(guān)于t的方程,求出方程的解即可得到t的值,然后把t的值代入表示出的MC與NC中,求出兩線段的和,再根據(jù)AB、AC與BC的值求出三角形ABC的周長(zhǎng)的一半,看與MC和NC兩線段的和是否相等,從而判斷出此時(shí)△ABC的周長(zhǎng)是否也被射線QN平分.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點(diǎn)E是AB邊上一點(diǎn),AE=BC,DE⊥EC,取DC的中點(diǎn)F,連接AF、BF.
          (1)求證:AD=BE;
          (2)試判斷△ABF的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)延長(zhǎng)FE交BC于點(diǎn)G,點(diǎn)G恰好是BC的中點(diǎn),若AB=6,求BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
          (1)求證:BC=CD;
          (2)在邊AB上找點(diǎn)E,連接CE,將△BCE繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫(huà)出符合條件的大致圖形,并求出AE:EB的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點(diǎn)E是直角梯形ABCD內(nèi)一點(diǎn),且∠EAD=∠EDA=15°,連接EB、EF.
          (1)求證:EB=EF;
          (2)若EF=6,求梯形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點(diǎn),AD=3cm,BC=5cm.求⊙O的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案