日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
          (1)求該拋物線的函數(shù)關(guān)系式;
          (2)當(dāng)△ADP是直角三角形時,求點P的坐標(biāo);
          (3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.

          【答案】分析:(1)已知了拋物線的頂點坐標(biāo),可將拋物線的解析式設(shè)為頂點式,然后將函數(shù)圖象經(jīng)過的C點坐標(biāo)代入上式中,即可求出拋物線的解析式;
          (2)由于PD∥y軸,所以∠ADP≠90°,若△ADP是直角三角形,可考慮兩種情況:
          ①以點P為直角頂點,此時AP⊥DP,此時P點位于x軸上(即與B點重合),由此可求出P點的坐標(biāo);
          ②以點A為直角頂點,易知OA=OC,則∠OAC=45°,所以O(shè)A平分∠CAP,那么此時D、P關(guān)于x軸對稱,可求出直線AC的解析式,然后設(shè)D、P的橫坐標(biāo),根據(jù)拋物線和直線AC的解析式表示出D、P的縱坐標(biāo),由于兩點關(guān)于x軸對稱,則縱坐標(biāo)互為相反數(shù),可據(jù)此求出P點的坐標(biāo);
          (3)很顯然當(dāng)P、B重合時,不能構(gòu)成以A、P、E、F為頂點的四邊形,因為點P、F都在拋物線上,且點P為拋物線的頂點,所以PF與x軸不平行,所以只有(2)②的一種情況符合題意,由②知此時P、Q重合;假設(shè)存在符合條件的平行四邊形,那么根據(jù)平行四邊形的性質(zhì)知:P、F的縱坐標(biāo)互為相反數(shù),可據(jù)此求出F點的縱坐標(biāo),代入拋物線的解析式中即可求出F點的坐標(biāo).
          解答:解:(1)∵拋物線的頂點為Q(2,-1),
          ∴設(shè)拋物線的解析式為y=a(x-2)2-1,
          將C(0,3)代入上式,得:
          3=a(0-2)2-1,a=1;
          ∴y=(x-2)2-1,即y=x2-4x+3;

          (2)分兩種情況:
          ①當(dāng)點P1為直角頂點時,點P1與點B重合;
          令y=0,得x2-4x+3=0,解得x1=1,x2=3;
          ∵點A在點B的右邊,
          ∴B(1,0),A(3,0);
          ∴P1(1,0);
          ②當(dāng)點A為△AP2D2的直角頂點時;
          ∵OA=OC,∠AOC=90°,
          ∴∠OAD2=45°;
          當(dāng)∠D2AP2=90°時,∠OAP2=45°,
          ∴AO平分∠D2AP2;
          又∵P2D2∥y軸,
          ∴P2D2⊥AO,
          ∴P2、D2關(guān)于x軸對稱;
          設(shè)直線AC的函數(shù)關(guān)系式為y=kx+b(k≠0).
          將A(3,0),C(0,3)代入上式得:

          解得;
          ∴y=-x+3;
          設(shè)D2(x,-x+3),P2(x,x2-4x+3),
          則有:(-x+3)+(x2-4x+3)=0,
          即x2-5x+6=0;
          解得x1=2,x2=3(舍去);
          ∴當(dāng)x=2時,y=x2-4x+3=22-4×2+3=-1;
          ∴P2的坐標(biāo)為P2(2,-1)(即為拋物線頂點).
          ∴P點坐標(biāo)為P1(1,0),P2(2,-1);

          (3)由(2)知,當(dāng)P點的坐標(biāo)為P1(1,0)時,不能構(gòu)成平行四邊形;
          當(dāng)點P的坐標(biāo)為P2(2,-1)(即頂點Q)時,
          平移直線AP交x軸于點E,交拋物線于F;
          ∵P(2,-1),
          ∴可設(shè)F(x,1);
          ∴x2-4x+3=1,
          解得x1=2-,x2=2+;
          ∴符合條件的F點有兩個,
          即F1(2-,1),F(xiàn)2(2+,1).
          點評:此題主要考查了二次函數(shù)解析式的確定、直角三角形的判定、平行四邊形的判定和性質(zhì)等重要知識點,同時還考查了分類討論的數(shù)學(xué)思想,能力要求較高,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2011年山東省泰安市中考數(shù)學(xué)樣卷(解析版) 題型:解答題

          (2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
          (1)求該拋物線的函數(shù)關(guān)系式;
          (2)當(dāng)△ADP是直角三角形時,求點P的坐標(biāo);
          (3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

          (2010•遵義)如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為Q(2,-1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
          (1)求該拋物線的函數(shù)關(guān)系式;
          (2)當(dāng)△ADP是直角三角形時,求點P的坐標(biāo);
          (3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

          (2010•遵義)如圖,在第一象限內(nèi),點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

          (2010•遵義)如圖,在第一象限內(nèi),點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年貴州省遵義市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2010•遵義)如圖,在第一象限內(nèi),點P(2,3),M(a,2)是雙曲線y=(k≠0)上的兩點,PA⊥x軸于點A,MB⊥x軸于點B,PA與OM交于點C,則△OAC的面積為   

          查看答案和解析>>

          同步練習(xí)冊答案