日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知凸四邊形ABCD,E,F(xiàn),G,H分別在AB,BC,CD,DA上,且BE=2AE,BF=2CF,DH=2AH,DG=2CG,求證:SKLMN=S△AKH+S△BEL+S△CFM+S△DNG

          【答案】分析:由題意連接AC,得出三角形ADG的面積,然后根據(jù)圖形可知,從而進(jìn)行證明.
          解答:證明:連AC,
          因為DG=2GC,所以
          ∵BE=2AE,


          同理,
          ∴S△ADC+S△BCE+S△DCF+S△ABH=S四邊形ABCDS四邊形ABCD=S四邊形KLMN+(S△ADG-S△DGN)+(S△DCF-S△CFM)+(S△CBE-S△BEL)+(S△ABH-S△AHK
          由(1)、(2)得,S四邊形KLMN=S△AHK+S△BEL+S△CFM+S△DGN

          點評:此題主要考查了三角形的面積公式,用規(guī)則的圖形表示出不規(guī)則的圖形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知凸四邊形ABCD的兩對角線BD與AC之比為k,菱形EFGH各頂點位于四邊形ABCD的順次四邊之上,且EF∥AC,F(xiàn)G∥BD,則四邊形ABCD與菱形EFGH的面積之比為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知凸四邊形ABCD,E,F(xiàn),G,H分別在AB,BC,CD,DA上,且BE=2AE,BF=2CF,DH=2AH,DG=2CG,求證:SKLMN=S△AKH+S△BEL+S△CFM+S△DNG

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2011年四川省南充市高坪中學(xué)九年級數(shù)學(xué)競賽試卷(解析版) 題型:填空題

          如圖,已知凸四邊形ABCD的兩對角線BD與AC之比為k,菱形EFGH各頂點位于四邊形ABCD的順次四邊之上,且EF∥AC,F(xiàn)G∥BD,則四邊形ABCD與菱形EFGH的面積之比為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2000年第12屆“五羊杯”初中數(shù)學(xué)競賽初三試卷(解析版) 題型:填空題

          如圖,已知凸四邊形ABCD的兩對角線BD與AC之比為k,菱形EFGH各頂點位于四邊形ABCD的順次四邊之上,且EF∥AC,F(xiàn)G∥BD,則四邊形ABCD與菱形EFGH的面積之比為   

          查看答案和解析>>

          同步練習(xí)冊答案