【題目】提出問題:
(1)如圖,我們將圖(1)所示的凹四邊形稱為“鏢形”.在“鏢形”圖中,與
、
、
的數量關系為____.
(2)如圖(2),已知平分
,
,
,求
的度數.
由(1)結論得:
所以 即
因為
所以
所以.
解決問題:
(1)如圖(3),直線平分
,
平分
的外角
,猜想
與
、
的數量關系是______;
(2)如圖(4),直線平分
的外角
,
平分
的外角
,猜想
與
、
的數量關系,并說明理由.
【答案】提出問題:
(1)
(2)
解決問題:
(1)
(2)
【解析】
問題1:根據三角形的外角的性質即可得到結論;
問題2:根據角平分線的定義可得∠1=∠2,∠3=∠4,再根據(1)的結論列出整理即可得解;
解決問題1:根據四邊形的內角和等于360°可得(180°-∠1)+∠P+∠4+∠B=360°,∠2+∠P+(180°-∠3)+∠D=360°,然后整理即可得解;
解決問題2:根據(1)的結論∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解.
問題1:連接PO并延長.
則∠1=∠A+∠2,∠3=∠C+∠4,
∵∠2+∠4=∠P,∠1+∠3=∠AOC,
∴∠AOC=∠A+∠C+∠P;
故答案為:∠AOC=∠A+∠C+∠P;
問題2:如圖2,∵AP、CP分別平分∠BAD、∠BCD,
∴∠1=∠2,∠3=∠4,
∵∠2+∠B=∠3+∠P,
∠1+∠P=∠4+∠D,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=
×(28°+48°)=38°;
解決問題1:如圖3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴(180°-2∠1)+∠B=(180°-2∠4)+∠D,
在四邊形APCB中,(180°-∠1)+∠P+∠4+∠B=360°,
在四邊形APCD中,∠2+∠P+(180°-∠3)+∠D=360°,
∴2∠P+∠B+∠D=360°,
∴∠P=180°-(∠B+∠D);
解決問題2:如圖4,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,
∠2+∠P=(180°-∠3)+∠D,
∴2∠P=180°+∠D+∠B,
∴∠P=90°+(∠B+∠D).
故答案為:∠P=90°+(∠B+∠D).
科目:初中數學 來源: 題型:
【題目】已知:如圖OA平分∠BAC,∠1=∠2.
求證:AO⊥BC.
同學甲說:要作輔助線;
同學乙說:要應用角平分線性質定理來解決:
同學丙說:要應用等腰三角形“三線合一”的性質定理來解決.
請你結合同學們的討論寫出證明過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數的圖象與一次函數
的圖象交于點A(1,4)和點B
(,
).
(1)求這兩個函數的表達式;
(2)觀察圖象,當>0時,直接寫出
>
時自變量
的取值范圍;
(3)如果點C與點A關于軸對稱,求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】文美書店決定用不多于20000元購進甲乙兩種圖書共1200本進行銷售.甲、乙兩種圖書的進價分別為每本20元、14元,甲種圖書每本的售價是乙種圖書每本售價的1.4倍,若用1680元在文美書店可購買甲種圖書的本數比用1400元購買乙種圖書的本數少10本.
(1)甲乙兩種圖書的售價分別為每本多少元?
(2)書店為了讓利讀者,決定甲種圖書售價每本降低3元,乙種圖書售價每本降低2元,問書店應如何進貨才能獲得最大利潤?(購進的兩種圖書全部銷售完.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC的頂點都在方格紙的格點上,將△ABC向右平移4格,再向上平移2格,其中每個格子的邊長為1個單位長度。
⑴在圖中畫出平移后的△A′B′C′;
⑵若連接AA′、CC′,則這兩條線段的關系是 ;
⑶作△ABC的高AD,并求△ABC的面積。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名射擊選示在10次射擊訓練中的成績統計圖(部分)如圖所示:
根據以上信息,請解答下面的問題;
選手 | A平均數 | 中位數 | 眾數 | 方差 |
甲 | a | 8 | 8 | c |
乙 | 7.5 | b | 6和9 | 2.65 |
(1)補全甲選手10次成績頻數分布圖.
(2)a= ,b= ,c= .
(3)教練根據兩名選手手的10次成績,決定選甲選手參加射擊比賽,教練的理由是什么?(至少從兩個不同角度說明理由).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,D、E為圓上兩點,C為圓外一點,且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA= ,BC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著中國傳統節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com