日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:△ABC中,∠BCA=2∠BAC,將△ABC繞點(diǎn)A逆時(shí)針轉(zhuǎn)α角得到△ANM.
          (1)如圖,當(dāng)AB⊥MC且AB=MC時(shí),求∠BCA的度數(shù);
          (2)若∠BAC=20°,求旋轉(zhuǎn)角α為何值時(shí),可使四邊形ACMN為梯形.
          分析:(1)利用旋轉(zhuǎn)的性質(zhì)得出四邊形NMCA為等腰梯形,設(shè)∠BAC=x,則∠NAC=3x=∠MCA,得出8x=180°,進(jìn)而得出∠BCA=2x=45°;
          (2)分別根據(jù)①當(dāng)MN∥AC時(shí),②當(dāng)AN∥CM時(shí),分別求出旋轉(zhuǎn)角α的度數(shù)即可.
          解答:解:(1)由題意得出:△ABC≌△ANM,
          ∴AM=AC,∠NMA=∠ACB,
          又∵AB⊥MC,
          ∴∠MAB=∠CAB,
          ∴∠MAC=2∠BAC,
          ∴∠NMA=∠MAC,
          ∴MN∥AC,
          又∵AN=AB=MC,
          ∴四邊形NMCA為等腰梯形,
          ∴∠MCA=∠NAC,設(shè)∠BAC=x,
          則∠NAC=3x=∠MCA,
          又∵AM=AC,
          ∴∠AMC=∠ACM=3x,
          ∵∠AMN=2x,∴8x=180°,
          ∴x=22.5°,
          ∴∠BCA=2x=45°;

          (2)①當(dāng)MN∥AC時(shí),∠MAC=∠AMN=2∠BAC,
          又∵∠BAC=20°,
          ∴∠MAC=40°,即α=40°,
          ②如圖所示:當(dāng)AN∥CM時(shí),∠AMC=∠NAM=20°,
          又∵AC=AM,
          ∴∠ACM=∠AMC=20°,
          又∵∠NAC+∠ACM=180°,
          ∠NAM=20°,∠AMC=20°,∴∠CAM=140°,
          即α=140°,
          綜上所述,當(dāng)旋轉(zhuǎn)角α為40°或140°時(shí),可使四邊形ACMN為梯形.
          點(diǎn)評:此題主要考查了旋轉(zhuǎn)的性質(zhì)以及等腰梯形的性質(zhì)和三角形內(nèi)角和定理等知識,根據(jù)圖形利用分類討論得出是解題關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
          3
          4
          ,現(xiàn)將△ABC繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)α(45°<α<135°)得到△DCE,設(shè)直線DE與直線AB相交于點(diǎn)P,連接CP.
          精英家教網(wǎng)
          (1)當(dāng)CD⊥AB時(shí)(如圖1),求證:PC平分∠EPA;
          (2)當(dāng)點(diǎn)P在邊AB上時(shí)(如圖2),求證:PE+PB=6;
          (3)在△ABC旋轉(zhuǎn)過程中,連接BE,當(dāng)△BCE的面積為
          25
          4
          3
          時(shí),求∠BPE的度數(shù)及PB的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          8、如圖,已知在△ABC中,AD垂直平分BC,AC=EC,點(diǎn)B、D、C、E在同一直線上,則下列結(jié)論:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正確的個(gè)數(shù)有( 。﹤(gè).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知在△ABC中,有一個(gè)角為60°,S△ABC=10
          3
          ,周長為20,則三邊長分別為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上的點(diǎn),以AE為直徑的⊙O與過B點(diǎn)的⊙P精英家教網(wǎng)外切于點(diǎn)D,若AC和BC邊的長是關(guān)于x的方程x2-(AB+4)x+4AB+8=0的兩根,且25BC•sinA=9AB,
          (1)求△ABC三邊的長;
          (2)求證:BC是⊙P的切線;
          (3)若⊙O的半徑為3,求⊙P的半徑.

          查看答案和解析>>

          同步練習(xí)冊答案