日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,正方形ABCD,BE⊥ED,連接BD,CE.
          (1)求證:∠EBD=∠ECD;
          (2)設(shè)EB,EC交AD于F,G兩點(diǎn),若AF=2FG,探究線段CG與DG之間的數(shù)量關(guān)系并證明.
          分析:(1)過(guò)點(diǎn)C作CM⊥BE于M,作CN⊥DE交ED的延長(zhǎng)線于N,可得四邊形CNEM是矩形,根據(jù)同角的余角相等求出∠BCM=∠DCN,再根據(jù)正方形的性質(zhì)可得BC=CD,然后求出△BCM和△DCN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CM=CN,從而得到矩形CNEM是正方形,根據(jù)正方形的對(duì)角線平分一組對(duì)角求出∠CEM=45°,再求出∠BDC=45°,設(shè)BD、CE交于點(diǎn)O,根據(jù)三角形的內(nèi)角和定理列式整理即可得到∠EBD=∠ECD;
          (2)過(guò)點(diǎn)P作BP⊥CE于P,BP的延長(zhǎng)線交CD于點(diǎn)Q,連接FQ,根據(jù)∠BEP=45°求出∠EBP=45°,延長(zhǎng)DC到點(diǎn)Q,使CR=AF,根據(jù)正方形的性質(zhì)可得AB=BC,然后利用“邊角邊”證明△ABF和△CBR全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BF=BR,全等三角形對(duì)應(yīng)角相等可得∠ABF=∠CBR,然后求出∠QBR=∠QBF=45°,再求出利用“邊角邊”證明△FBQ和△RBQ全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得FQ=QR,再利用“角邊角”證明△BCQ和△CDG全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得DG=CQ,然后設(shè)FG=x,DG=CQ=a,表示出AF=CR=2x,AD=3x+a,再表示出FQ、FD、DQ,在Rt△DQF中,利用勾股定理列式求解得到a=3x,從而求出CD=2a,在Rt△CDG中,利用勾股定理列式求出CG=
          5
          a,從而得解.
          解答:(1)證明:如圖,過(guò)點(diǎn)C作CM⊥BE于M,作CN⊥DE交ED的延長(zhǎng)線于N,
          ∵BE⊥ED,
          ∴四邊形CNEM是矩形,
          ∴∠DCN+∠DCM=∠MCN=90°,
          又∵∠BCM+∠DCM=∠BCD=90°,
          ∴∠BCM=∠DCN,
          正方形ABCD中,BC=CD,
          在△BCM和△DCN中,
          ∠BCM=∠DCN
          ∠BMC=∠DNC=90°
          BC=CD
          ,
          ∴△BCM≌△DCN(AAS),
          ∴CM=CN,
          ∴矩形CNEM是正方形,
          ∴∠CEM=45°,
          又∵四邊形ABCD是正方形,
          ∴∠BDC=45°,
          設(shè)BD、CE交于點(diǎn)O,
          在△BEO中,∠EBO+∠EOB+∠BEO=180°,
          在△CDO中,∠COD+∠ODC+∠OCD=180°,
          ∵∠BOE=∠COD,
          ∴∠EBO=∠OCD,
          即:∠EBD=∠ECD;

          (2)解:CG=
          5
          DG.
          理由如下:如圖,過(guò)點(diǎn)P作BP⊥CE于P,BP的延長(zhǎng)線交CD于點(diǎn)Q,連接FQ,
          ∵∠BEP=45°,
          ∴∠EBP=90°-45°=45°,
          延長(zhǎng)DC到點(diǎn)Q,使CR=AF,
          在正方形ABCD中,AB=BC,
          在△ABF和△CBR中,
          AB=BC
          ∠A=∠BCR=90°
          AF=CR

          ∴△ABF≌△CBR(SAS),
          ∴BF=BR,∠ABF=∠CBR,
          ∴∠QBR=∠QBC+∠CBR=∠QBC+∠ABF=90°-∠EBP=45°,
          ∴∠QBR=∠QBF=45°,
          在△FBQ和△RBQ中,
          BF=BR
          ∠QBR=∠QBF
          BQ=BQ

          ∴△FBQ≌△RBQ(SAS),
          ∴FQ=QR,
          ∵BP⊥CE,
          ∴∠CBQ+∠BCP=90°,
          又∵∠BCP+∠DCG=∠BCD=90°,
          ∴∠CBQ=∠DCG,
          在△BCQ和△CDG中,
          ∠CBQ=∠DCG
          BC=CD
          ∠BCQ=∠CDG=90°
          ,
          ∴△BCQ≌△CDG(ASA),
          ∴DG=CQ,
          設(shè)FG=x,DG=CQ=a,
          則AF=CR=2FG=2x,AD=AF+FG+DG=2x+x+a=3x+a,
          FQ=QR=CQ+CR=DG+AF=a+2x,
          FD=FG+DG=x+a,
          DQ=CD-CQ=AD-DG=3x+a-a=3x,
          在Rt△DQF中,F(xiàn)Q2=FD2+DQ2
          即(a+2x)2=(x+a)2+(3x)2,
          解得a=3x,
          ∴CD=AD=3x+a=2a,
          在Rt△CDG中,CG=
          CD2+DG2
          =
          (2a)2+a2
          =
          5
          a,
          ∴CG=
          5
          DG.
          點(diǎn)評(píng):本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理的應(yīng)用,綜合性較強(qiáng),難度較大,作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,難點(diǎn)在于作輔助線后需要多次證明三角形全等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
          2
          cm,則△AEC面積為
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
          A、1B、2C、3D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
          16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
          (1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
          (2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案