日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0)、B(3,0)和C(0,-3),線段BC與拋物線的對稱軸相交于點(diǎn)P.M、N分別是線段OC和x軸上的動點(diǎn),運(yùn)動時(shí)保持∠MPN=90°不變.連結(jié)MN,設(shè)MC=m.
          (1)求拋物線的函數(shù)解析式;
          (2)用含m的代數(shù)式表示△PMN的面積S,并求S的最大值;
          (3)以PM、PN為一組鄰邊作矩形PMDN,當(dāng)此矩形全部落在拋物線與x軸圍成的封閉區(qū)域內(nèi)(含邊界)時(shí),求m的取值范圍.

          【答案】分析:(1)將A、B、C三點(diǎn)坐標(biāo)代入拋物線解析式,可得出a、b、c的值,繼而得出拋物線解析式;
          (2)作PE⊥y軸于點(diǎn)E,設(shè)拋物線的對稱軸與x軸相交于點(diǎn)F,先求出直線BC解析式,確定點(diǎn)P的坐標(biāo),在Rt△PME中表示出PM,證明△MPE∽△NPF,利用對應(yīng)邊成比例得出PN的表達(dá)式,繼而可得出S關(guān)于m的表達(dá)式,再由m的取值范圍,可得出S的最大值;
          (3)找到兩個極值點(diǎn),①點(diǎn)D在x軸上,此時(shí)很容易得出m=1;②點(diǎn)D在拋物線上,作DG⊥x軸于點(diǎn)G,證明△MPE≌△DNG,得出DG=ME=1-m,NG=PE=1,由(2),得出NF=2ME=2-2m,則可得到OG=1-ON=NF=2-2m,得出點(diǎn)D的坐標(biāo),代入拋物線解析式得出m的值,綜合起來可得出m的取值范圍.
          解答:解:(1)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0)、B(3,0)和C(0,-3),
          ,
          解得:
          ∴拋物線的解析式是y=x2-2x-3;

          (2)作PE⊥y軸于點(diǎn)E,設(shè)拋物線的對稱軸與x軸相交于點(diǎn)F,
          易得拋物線的對稱軸為直線x=1,直線BC的解析式為y=x-3,
          ∴P(1,-2),
          ∴E(0,-2),ME=|m-1|,
          ,
          ∵∠MPN=90°,∠EPF=90°,
          ∴∠MPE=∠NPF,
          又∵∠PEM=∠PFN=90°,
          ∴△MPE∽△NPF,
          ,
          ∴PN=2PM,
          ,
          ∵0≤m≤3,
          ∴當(dāng)m=3時(shí),S有最大值,最大值是5;

          (3)①當(dāng)點(diǎn)D在x軸上時(shí),點(diǎn)D、M顯然分別與點(diǎn)O、E重合,
          此時(shí),m=1;
          ②當(dāng)點(diǎn)D在拋物線上時(shí)(如圖2),作DG⊥x軸于點(diǎn)G,
          ∠MPE+∠NPE=90°,∠NPE+∠NPF=90°,
          ∴∠MPE=∠NPF,
          又∵∠DNG+∠PNF=90°,∠NPF+∠PNF=90°,
          ∴∠DNG=∠NPF,
          ∴∠MPE=∠DNG,
          在△MPE和△DNG中,

          ∴△MPE≌△DNG(AAS),
          ∴DG=ME=1-m,NG=PE=1,
          由(2)得:,故NF=2ME=2-2m,
          ∴OG=1-ON=NF=2-2m,
          ∴D(2m-2,m-1),
          代入拋物線解析式得:m-1=(2m-2)2-2(2m-2)-3,
          整理得:4m2-13m+6=0,
          解得:,(不合題意,舍去),
          時(shí),點(diǎn)D恰好在拋物線上,
          ∴當(dāng)時(shí),此矩形全部落在拋物線與x軸圍成的封閉區(qū)域內(nèi).
          點(diǎn)評:本題是二次函數(shù)的綜合題型,涉及了待定系數(shù)法求二次函數(shù)解析式、動點(diǎn)問題、根據(jù)邊界點(diǎn)確定動取值范圍,解答本題需要一定的耐心及對基礎(chǔ)知識的熟練掌握,同學(xué)們要注意培養(yǎng)自己解答綜合題的能力,做到將所學(xué)知識點(diǎn)融會貫通.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
          (1)求拋物線的解析式;
          (2)求直線BC的函數(shù)解析式;
          (3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
          (4)點(diǎn)Q是直線BC上的一個動點(diǎn),若△QOB為等腰三角形,請寫出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
          (1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)在拋物線的對稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對稱軸是x=-1.
          (1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
          (2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時(shí)動點(diǎn)M從O點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動,過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時(shí)間為t秒.
          ①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
          ②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
          (1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
          (2)點(diǎn)P是拋物線對稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
          (1)求此拋物線的解析式;
          (2)①當(dāng)x的取值范圍滿足條件
          -2<x<0
          -2<x<0
          時(shí),y<-3;
               ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
          (3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長度的最大值;
          (4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案