日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在中,, , ,,連接,交于點(diǎn),連接.下列結(jié)論:①;②,③平分;④平分.其中正確的為___________

          【答案】①②

          【解析】

          SAS證明△AOC≌△BOD得出∠OCA=∠ODB,ACBD,①正確;由全等三角形的性質(zhì)得出∠OAC=∠OBD,由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB40°,②正確;作OGMCG,OHMBH,如圖所示:則∠OGC=∠OHD90°,由AAS證明△OCG≌△ODHAAS),得出OGOH,由角平分線的判定方法得出MO平分∠BMC,④正確;由∠AOB=∠COD,得出當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC,假設(shè)∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OBOC,而OAOB,所以OAOC,而OAOC,故③錯(cuò)誤;即可得出結(jié)論.

          ∵∠AOB=∠COD40°,

          ∴∠AOB+∠AOD=∠COD+∠AOD,

          即∠AOC=∠BOD

          在△AOC和△BOD中,

          ,

          ∴△AOC≌△BODSAS),

          ∴∠OCA=∠ODB,ACBD,①正確;

          ∴∠OAC=∠OBD

          由三角形的外角性質(zhì)得:∠AMB+∠OAC=∠AOB+∠OBD,

          ∴∠AMB=∠AOB40°,②正確;

          OGMCG,OHMBH,如圖2所示:

          則∠OGC=∠OHD90°,

          在△OCG和△ODH中,

          ∴△OCG≌△ODHAAS),

          OGOH

          MO平分∠BMC,④正確;

          ∵∠AOB=∠COD,

          ∴當(dāng)∠DOM=∠AOM時(shí),OM才平分∠BOC

          假設(shè)∠DOM=∠AOM

          ∵△AOC≌△BOD,

          ∴∠COM=∠BOM,

          MO平分∠BMC

          ∴∠CMO=∠BMO,

          在△COM和△BOM中,

          ∴△COM≌△BOMASA),

          OBOC

          OAOB

          OAOC

          OAOC矛盾,

          ∴③錯(cuò)誤;

          故答案為:①②.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,益陽(yáng)市梓山湖中有一孤立小島,湖邊有一條筆直的觀光小道AB,現(xiàn)決定從小島架一座與觀光小道垂直的小橋PD,小張?jiān)谛〉郎蠝y(cè)得如下數(shù)據(jù):AB=80.0米,PAB=38.5°,PBA=26.5°.請(qǐng)幫助小張求出小橋PD的長(zhǎng)并確定小橋在小道上的位置.(以A,B為參照點(diǎn),結(jié)果精確到0.1米)

          (參考數(shù)據(jù):sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.已知CD=2,則AB的長(zhǎng)度等于____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商店購(gòu)進(jìn)、兩種商品,購(gòu)買(mǎi)1個(gè)商品比購(gòu)買(mǎi)1個(gè)商品多花10元,并且花費(fèi)300元購(gòu)買(mǎi)商品和花費(fèi)100元購(gòu)買(mǎi)商品的數(shù)量相等.

          1)求購(gòu)買(mǎi)一個(gè)商品和一個(gè)商品各需要多少元;

          2)商店準(zhǔn)備購(gòu)買(mǎi)兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購(gòu)買(mǎi)、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購(gòu)買(mǎi)方案?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,ADBC邊上的高,AE、BF分別是∠BAC、ABC的平分線,∠BAC=50°,ABC=60°,則∠EAD+ACD=( 。

          A. 75° B. 80° C. 85° D. 90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn)并經(jīng)過(guò)B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).

          (1)求二次函數(shù)的解析式;

          (2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo);

          (3)該二次函數(shù)的對(duì)稱(chēng)軸交x軸于C點(diǎn),連接BC,并延長(zhǎng)BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線y1=2x-2的圖像與y軸交于點(diǎn)A,直線y2=-2x+6的圖像與y軸交于點(diǎn)B,兩者相交于點(diǎn)C.

          (1)方程組的解是______

          (2)當(dāng)y1>0與y2>0同時(shí)成立時(shí),x的取值范圍為_____

          (3)求△ABC的面積;

          (4)在直線y1=2x-2的圖像上存在異于點(diǎn)C的另一點(diǎn)P,使得△ABC與△ABP的面積相等,請(qǐng)求出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,二次函數(shù)的圖象與軸交于點(diǎn),,交軸于點(diǎn),點(diǎn)是二次函數(shù)圖象上關(guān)于拋物線對(duì)稱(chēng)軸的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn),

          請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);

          求二次函數(shù)的解析式;

          根據(jù)圖象直接寫(xiě)出一次函數(shù)值大于二次函數(shù)值的的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)Ax軸垂線,垂足為C,過(guò)點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

          (1)求k的值;

          (2)求證:DCAB;

          (3)當(dāng)ADBC時(shí),求直線AB的函數(shù)表達(dá)式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案