日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,C為線段AB上的一點(diǎn),△ACM、△CBN都是等邊三角形,若AC=3,BC=2,則△MCD與△BND的面積比為   
          【答案】分析:利用△ACM、△CBN都是等邊三角形,則也是相似三角形,相似比是3:2,再證得△MCD∽△BND,則面積比可求.
          解答:解:∵△ACM、△CBN都是等邊三角形,
          ∴△ACM∽△CBN,
          ∴CM:BN=AC:BC=3:2;
          ∵△ACM、△CBN都是等邊三角形,
          ∴∠MCA=∠NDB=∠BND=60°,
          ∴∠MCN=60°=∠BND,
          ∴∠CMD=∠NBD(三角形內(nèi)角和定理)
          ∴△MCD∽△BND
          ∴△MCD與△BND的面積比為(2=(2=
          點(diǎn)評:本題考查對相似三角形的判定及性質(zhì)的理解.相似三角形面積的比等于相似比的平方.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,C為線段AB上一點(diǎn),以BC為直徑作⊙O,再以AO為直徑作⊙M交⊙O于D、B作AB的垂線交AD的延長線于F,連接CD.若AC=2,且AC與AD的長是關(guān)于x的方程x2-2(1+
          5
          )
          x+k=0的兩個根.
          ①求證:AD是⊙O的切線;
          ②求線段DF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,C為線段AB上的一點(diǎn),△ACM、△CBN都是等邊三角形,若AC=3,BC=2,則△MCD與△BND的面積比為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,C為線段AB上的一點(diǎn),△ACM、△CBN都是等邊三角形,BM與CN交于D點(diǎn).若AC=3,BC=2,則CD=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          7、如圖,P為線段AB上一點(diǎn),AD與BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,則圖中
          相似三角形有( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•順義區(qū)二模)已知:如圖,D為線段AB上一點(diǎn)(不與點(diǎn)A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
          (1)如圖1,當(dāng)點(diǎn)D恰是AB的中點(diǎn)時,請你猜想并證明∠ACE與∠BCF的數(shù)量關(guān)系;
          (2)如圖2,當(dāng)點(diǎn)D不是AB的中點(diǎn)時,你在(1)中所得的結(jié)論是否發(fā)生變化,寫出你的猜想并證明;
          (3)若∠ACB=α,直接寫出∠ECF的度數(shù)(用含α的式子表示).

          查看答案和解析>>

          同步練習(xí)冊答案