日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D,
          求證:AP·AC+BP·BD=AB2。
          證明:連結(jié)AD、BC,
          過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;
          同理:M、C在以BP為直徑的圓上,
          由割線定理得:AP·AC=AM·AB,BP·BD=BM·BA,
          所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2,
          當(dāng)點(diǎn)P在半圓周上時(shí),也有AP·AC+BP·BD=AP2+BP2=AB2成立,
          那么:(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP·AC+BP·BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái)。

          解:(1)成立;
          證明:如圖(2),∵∠PCM=∠PDM=90°,
          ∴點(diǎn)C、D在以PM為直徑的圓上,
          ∴AC·AP=AM·MD,BD·BP=BM·BC,
          ∴AC·AP+BD·BP=AM·MD+BM·BC,
          由已知,AM·MD+BM·BC=AB2,
          ∴AP·AC+BP·BD=AB2
          (2)如圖(3),過(guò)P作PM⊥AB,
          交AB的延長(zhǎng)線于M,連結(jié)AD、BC,
          則C、M在以PB為直徑的圓上,∴AP·AC=AB·AM,①
          D、M在以PA為直徑的圓上,∴BP·BD=AB·BM,②
          由圖象可知:AB=AM-BM,③
          由①②③可得:AP·AC-BP·BD=AB·(AM-BM)=AB2。

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          24、閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D.
          求證:AP•AC+BP•BD=AB2
          證明:連接AD、BC,過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
          由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
          所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
          當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
          (1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第3章《圓》中考題集(51):3.5 直線和圓的位置關(guān)系(解析版) 題型:解答題

          閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D.
          求證:AP•AC+BP•BD=AB2
          證明:連接AD、BC,過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
          由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
          所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
          當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
          (1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第5章《中心對(duì)稱圖形(二)》中考題集(44):5.5 直線與圓的位置關(guān)系(解析版) 題型:解答題

          閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D.
          求證:AP•AC+BP•BD=AB2
          證明:連接AD、BC,過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
          由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
          所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
          當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
          (1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:第24章《圓》中考題集(44):24.2 點(diǎn)、直線和圓的位置關(guān)系(解析版) 題型:解答題

          閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長(zhǎng)線分別交半圓O于點(diǎn)C、D.
          求證:AP•AC+BP•BD=AB2
          證明:連接AD、BC,過(guò)P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
          由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
          所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
          當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
          (1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫(xiě)出來(lái).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案