日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
          (1)求經(jīng)過O、A、B三點的拋物線解析式;
          (2)求S與t的函數(shù)關系式;
          (3)在運動過程中,是否存在某一時刻t,使得以C、P、Q為頂點的三角形與△OAB相似?若存在,求出t的值;若不存在,請說明理由.
          (4)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.
          分析:(1)設出此拋物線的解析式,把A、B兩點的坐標代入此解析式求出a、b的值即可;
          (2)由與t的取值范圍不能確定,故應分三種情況進行討論,
          ①當0<t≤2,重疊部分的面積是S△OPQ,過點A作AF⊥x軸于點F,在Rt△OPQ中利用三角形的面積公式及特殊角的三角函數(shù)值即可求出其面積;
          ②當2<t≤3,設PQ交AB于點G,作GH⊥x軸于點H,∠OPQ=∠QOP=45°,則四邊形OAGP是等腰梯形,
          重疊部分的面積是S梯形OAGP,由梯形的面積公式即可求解;
          ③當3<t<4,設PQ與AB交于點M,交BC于點N,重疊部分的面積是S五邊形OAMNC
          因為△PNC和△BMN都是等腰直角三角形,所以重疊部分的面積是S五邊形OAMNC=S梯形OABC-S△BMN,進而可求出答案;
          (3)利用已知得出∠BAO=∠QPC,只要
          PC
          PQ
          =
          AO
          AB
          或者
          PC
          PQ
          =
          AB
          AO
          即可得出以C、P、Q為頂點的三角形與△OAB相似,進而求出即可;
          (4)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)可求出將△OPQ繞著點P順時針旋轉(zhuǎn)90°時P、Q兩點的坐標,再根據(jù)拋物線的解析式即可求出t的值.
          解答:解:(1)設拋物線解析式為y=ax2+bx(a≠0),將A.B點坐標代入得出:
          1=a+b
          1=9a+3b
          ,
          解得:
          a=-
          1
          3
          b=
          4
          3

          故經(jīng)過O、A、B三點的拋物線解析式為:y=-
          1
          3
          x2+
          4
          3
          x.

          (2)①當0<t≤2時,重疊部分為△OPQ,過點A作AD⊥x軸于點D,
          如圖1.
          在Rt△AOD中,AD=OD=1,∠AOD=45°.
          在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°.
          ∴OQ=PQ=
          2
          2
          t.
          ∴S=S△OPQ=
          1
          2
          OQ•PQ=
          1
          2
          ×
          2
          2
          2
          2
          t=
          1
          4
          t2(0<t≤2);
          ②當2<t≤3時,設PQ交AB于點E,重疊部分為梯形AOPE,
          作EF⊥x軸于點F,如圖2.∵∠OPQ=∠QOP=45°
          ∴四邊形AOPE是等腰梯形∴AE=DF=t-2.
          ∴S=S梯形AOPE=
          1
          2
          (AE+OP)•AD=
          1
          2
          (t-2+t)×1
          =t-1(2<t≤3);
          ③當3<t<4時,設PQ交AB于點E,交BC于點F,
          重疊部分為五邊形AOCFE,如圖3.
          ∵B(3,1),OP=t,∴PC=CF=t-3.
          ∵△PFC和△BEF都是等腰直角三角形
          ∴BE=BF=1-(t-3)=4-t
          ∴S=S五邊形AOCFE=S梯形OABC-S△BEF,
          =
          1
          2
          (2+3)×1-
          1
          2
          (4-t)2
          =-
          1
          2
          t2+4t-
          11
          2
          (3<t<4);

          (3)連接QC,OB,
          ∵AB∥OC,
          ∴∠BAO+∠AOC=180°,
          ∵∠AOC=45°,∠OQP=90°,
          ∴∠QPO=45°,
          ∵∠QPO+∠QPC=180°,
          ∴∠BAO=∠QPC,
          只要
          PC
          PQ
          =
          AO
          AB
          或者
          PC
          PQ
          =
          AB
          AO
          即可得出以C、P、Q為頂點的三角形與△OAB相似,
          得出:3-t=
          2
          2
          ×
          2
          2
          t 或3-t=
          2
          ×
          2
          2
          t
          解得:t=2或t=
          3
          2


          (4)存在,t1=1,t2=2.
          將△OPQ繞著點P順時針旋轉(zhuǎn)90°,此時Q(t+
          t
          2
          ,
          t
          2
          ),O(t,t)
          ①當點Q在拋物線上時,
          t
          2
          =-
          1
          3
          ×(t+
          t
          2
          2+
          4
          3
          ×(t+
          t
          2
          ),
          解得t=2;
          ②當點O在拋物線上時,t=-
          1
          3
          t2+
          4
          3
          t,
          解得:t=1.
          點評:本題考查了二次函數(shù)綜合題,涉及到用待定系數(shù)法求二次函數(shù)的解析式,三角形的面積公式、梯形的面積公式及圖形旋轉(zhuǎn)的性質(zhì),涉及面較廣,難度較大.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C、A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂直于直線OA,垂足為Q.設P點移動的時間為t秒(精英家教網(wǎng)0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
          (1)求經(jīng)過O、A、B三點的拋物線解析式;
          (2)求S與t的函數(shù)關系式;
          (3)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點C.A(1,1)、B(3,1).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ垂精英家教網(wǎng)直于直線OA,垂足為Q,設P點移動的時間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
          (1)求經(jīng)過O、A、B三點的拋物線解析式;
          (2)求S與t的函數(shù)關系式;
          (3)將△OPQ繞著點P順時針旋轉(zhuǎn)90°,是否存t,使得△OPQ的頂點O或Q在拋物線上?若存在,直接寫出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          6、如圖所示,已知在直角梯形ABCD中,∠B=∠C=90°,E為BC上的點,且EA=ED,∠AEB=75°,∠DEC=45°,試說明AB=BC.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,已知在直角三角形紙片ABC中,BC=3,∠BAC=30°,在AC上取一點E,以BE為折痕,使AB的一部分與BC重合,A與BC延長線上的點D重合,則DE的長度為( 。

          查看答案和解析>>

          同步練習冊答案