日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖在平面直角坐標系中,O為坐標原點,A、B兩點在x軸上且B在A點右側(cè),過點A和B做x軸垂線,分別交二次函數(shù)y=x2的圖象與C、D兩點,直線OC交BD于M.
          (1)若A點坐標為(1,0),B點坐標為(2,0),求證:S△CMD:S四邊形ABMC=2:3
          (2)將A、B兩點坐標改為A(t,0),B(2t,0)(t>0),其他條件不變,(1)中結(jié)論是否成立?請驗證.
          附加題:將y=x2改為y=ax2(a>0),其他條件不變,(1)中結(jié)論是否成立?請驗證.

          【答案】分析:(1)可先根據(jù)AB=OA得出B點的坐標,然后根據(jù)拋物線的解析式和A,B的坐標得出C,D兩點的坐標,再依據(jù)C點的坐標求出直線OC的解析式.進而可求出M點的坐標,然后根據(jù)C、D兩點的坐標求出直線CD的解析式進而求出D點的坐標,然后可根據(jù)這些點的坐標進行求解即可;
          (2)及附加題的解法同(1)完全一樣.
          解答:(1)∵A點坐標為A(1,0)B(2,0)
          ∴C點坐標為(1,1),D(2,4)
          設(shè)直線OC解析式為y=kx過點C(1,1)
          ∴k=1y=x
          ∴M坐標為(2,2)
          ∴S△CMD=1,S
          ∴S△CMD:SABMC=2:3;

          (2)結(jié)論仍然成立,∵A點坐標A(1,0),B為(2,0)
          ∴C(1,a),D(2,4a)
          設(shè)直線OC解析式為y=kx過點C(1,a)
          ∴k=a∴y=ax
          點M在直線OC上,當(dāng)x=2y時,y=2a
          ∴M(2,2a)
          S△OMD:SABNC=[]:[]=2:3
          結(jié)論成立

          附加題:
          ∵A(t,0)B(2t,0)
          ∴C坐標為C(t,at2+bt),D(2t,4at2+2bt)
          直線OC解析式為y=(at+b)x
          M在直線OC上,∴M(2t,2at2+2bt)
          ∴S△OMD:SABMC=2:3
          點評:本題主要考查了二次函數(shù)的綜合及圖形面積的求法、函數(shù)圖象的交點等知識點,本題是一題多變題,在中考中經(jīng)常出現(xiàn).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          21、如圖在平面直角坐標系中,△AOB的頂點分別為A(2,0),O(0,0),B(0,4).
          ①△AOC與△AOB關(guān)于x軸成軸對稱,則C點坐標為
          (0,-4)

          ②將△AOB繞AB的中點D逆時針旋轉(zhuǎn)90°得△EGF,則點A的對應(yīng)點E的坐標為
          (3,3)
          ;
          ③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
          1
          平方單位.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在平面直角坐標系xOy中,點A的坐標為(2,0),以點A為圓心,2為半徑的圓與x軸交于O,B兩點,C為⊙A上一點,P是x軸上的一點,連接CP,將⊙A向上平移1個單位長度,⊙A與x軸交于M、N,與y軸相切于點G,且CP與⊙A相切于點C,∠CAP=60°.請你求出平移后MN和PO的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖在平面直角坐標系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,且點A(0,2),點C(-1,0),如圖所示點B在拋物線y=ax2+ax-2上.
          (1)求點B的坐標;
          (2)求拋物線的解析式;
          (3)將三角板ABC繞頂點A逆時針方向旋轉(zhuǎn)90°到達△AB′C′的位置,請寫出點B′坐標
          (1,-1)
          (1,-1)
          ,點C′坐標
          (2,1)
          (2,1)
          ;判斷點B′
          ,C′
          (填“在”或“不”)在(2)中的拋物線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖在平面直角坐標系中,M為x軸上一點,⊙M交x軸于A、B兩點,交y軸于C、D兩點,P為
          BC
          上的一個動點,CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
          (1)求C點坐標;
          (2)當(dāng)點P在
          BC
          上運動時,線段AQ的長是否改變?若不變,請求出其長度;若改變,請說明理由.(提示:連接AC).
          (3)當(dāng)點P在
          BC
          上運動時,是否存在這樣的點P,使CQ所在直線經(jīng)過點M?若存在請直接寫出點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案