日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解方程:
          (1)用配方法解方程:6x2-x-12=0
          (2)(x+4)2=5(x+4)
          分析:(1)先把二次系數(shù)化為1得到x2-
          1
          6
          x=2,兩邊加上
          1
          12
          的平方后得到(x-
          1
          12
          2=
          289
          144
          ,然后利用直接開平方法求解;
          (2)先移項得到(x+4)2-5(x+4)=0,方程左邊分解得(x+4)(x+4-5)=0,原方程化為x+4=0或x+4-5=0,然后解一次方程即可.
          解答:解:(1)x2-
          1
          6
          x=2,
          x2-
          1
          6
          x+(
          1
          12
          2=2+(
          1
          12
          2
          ∵(x-
          1
          12
          2=
          289
          144

          ∴x-
          1
          12
          17
          12

          ∴x1=
          3
          2
          ,x2=-
          4
          3
          ;
          (2)∵(x+4)2-5(x+4)=0,
          ∴(x+4)(x+4-5)=0,
          ∴x+4=0或x+4-5=0,
          ∴x1=-4,x2=1.
          點評:本題考查了解一元二次方程-因式分解法:先把方程右邊變形為0,再把方程左邊分解為兩個一次式的乘積,這樣原方程轉(zhuǎn)化為兩個一元一次方程,然后解一次方程即可得到一元二次方程的解.也考查了配方法解一元二次方程.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          解方程:
          (1)用配方法解方程x2-4x+1=0
          (2)
          x+1
          x-1
          -
          4
          x2-1
          =1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          解方程:
          (1)用配方法解方程:x2+2x-1=0
          (2)用公式法解方程:2x2+x-6=0
          (3)用因式分解法解方程:
          2
          x2+3=3(x+1)

          (4)選擇一種自己喜歡的方法解方程:(2x-1)2=x2+2x+1.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          解方程:
          (1)用配方法解方程x2+4x+1=0      
          (2)解方程
          1
          x+2
          +
          4x
          x2-4
          =1+
          2
          x-2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1)計算:4×(-
          1
          2
          2-2(
          3
          -1
          0+
          3
          -
          (1-
          3
          )
          2
          ;
          (2)已知:x=
          2
          3
          -1
          ,求x2-x+1的值;
          (3)解方程2x2-5=3x(用配方法).

          查看答案和解析>>

          同步練習(xí)冊答案