【題目】如圖,一次函數(shù)與反比例函數(shù)
的圖象相交于A(2,2),B(n,4)兩點(diǎn),連接OA、OB.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)在直角坐標(biāo)系中,是否存在一點(diǎn)P,使以P、A、O、B為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)一次函數(shù)的解析式為,反比例函數(shù)的解析式為
;(2)
的面積為
;(3)存在,點(diǎn)
的坐標(biāo)為(-3,-6),(1,-2)(3,6).
【解析】
(1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出k2和n的值,可得反比例函數(shù)解析式,再利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)設(shè)一次函數(shù)與
軸交于點(diǎn)
,過(guò)點(diǎn)
、
分別向
軸作垂線,垂足為點(diǎn)
、
,令x=0,可求出點(diǎn)C的坐標(biāo),根據(jù)
即可得答案;
(3)分OA、OB、AB為對(duì)角線三種情況,根據(jù)A、B坐標(biāo)可得直線OA、OB的解析式,根據(jù)互相平行的兩條直線斜率相同可知直線OP、AP、BP的斜率,利用待定系數(shù)法可求出其解析式,進(jìn)而聯(lián)立解析式求出交點(diǎn)坐標(biāo)即可得答案.
(1)∵點(diǎn),
在反比例函數(shù)
上,
∴,
,
∴,
,
∴,
,
∵點(diǎn),
在一次函數(shù)
上,
∴,
,
∴,
,
∴,
∴一次函數(shù)的解析式為,反比例函數(shù)的解析式為
.
(2)如圖,設(shè)一次函數(shù)與y軸交于點(diǎn)
,過(guò)點(diǎn)
、
分別向
軸作垂線,垂足為點(diǎn)
、
,
∵當(dāng)時(shí),
,
∴點(diǎn)的坐標(biāo)為
,
∵,
,
∴,
,
∴,
即的面積為
.
(3)∵點(diǎn)A(2,2),B(-1,-4),
∴直線OA的解析式為y=x,直線OB的解析式為y=4x,直線AB的解析式為y=2x-2,
①如圖,當(dāng)OA//PB,OP//AB時(shí),
∴直線OP的解析式為y=2x+b1,
設(shè)直線PB的解析式為y=x+b1,
∵點(diǎn)B(-1,-4)在直線上,
∴-4=-1+b1,
解得:b1=-3,
∴直線PB的解析式為y=x-3,
聯(lián)立直線OP、BP解析式得:,
解得:,
∴點(diǎn)P坐標(biāo)為(-3,-6),
②如圖,當(dāng)OB//AP,OA//BP時(shí),同①可得BP解析式為y=x-3,
設(shè)AP的解析式為y=4x+b2,
∵點(diǎn)A(2,2)在直線AP上,
∴2=2×4+b2,
解得:b2=-6,
∴直線AP的解析式為y=4x-6,
聯(lián)立PB和AP解析式得:,
解得:,
∴點(diǎn)P坐標(biāo)為(1,-2),
③如圖,當(dāng)OP//AB,OB//AP時(shí),
同①②可得:直線OP的解析式為y=2x,直線AP的解析式為y=4x-6,
聯(lián)立直線OP和AP解析式得:,
解得:,
∴點(diǎn)P坐標(biāo)為(3,6),
綜上所述:存在點(diǎn)P,使以P、A、O、B為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)的坐標(biāo)為(-3,-6),(1,-2)(3,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D、點(diǎn)E在BC邊上,且.
(1)求證:△ABD∽△CBA.
(2)若△ACE∽△BCA,判定△ADE的形狀,并說(shuō)明理由;
(3)在(1)和(2)的條件下,若tan∠ADC=2,DE=6,請(qǐng)求出AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】商場(chǎng)銷售某種冰箱,該種冰箱每臺(tái)進(jìn)價(jià)為2500元,已知原銷售價(jià)為每臺(tái)2900元時(shí),平均每天能售出8臺(tái).若在原銷售價(jià)的基礎(chǔ)上每臺(tái)降價(jià)50元,則平均每天可多售出4臺(tái).設(shè)每臺(tái)冰箱的實(shí)際售價(jià)比原銷售價(jià)降低了元.
(1)填表:
每天的銷售量/臺(tái) | 每臺(tái)銷售利潤(rùn)/元 | |
降價(jià)前 | 8 | 400 |
降價(jià)后 |
(2)商場(chǎng)為使這種冰箱平均每天的銷售利潤(rùn)達(dá)到最大時(shí),則每臺(tái)冰箱的實(shí)際售價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形中,
,
,點(diǎn)
是對(duì)角線
所在直線上一點(diǎn),且
,直線
交直線
于點(diǎn)
,則
____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有四張正面分別印有和
四種圖案,并且其余完全相同的卡片,現(xiàn)將印有圖案的一面朝下,并打亂擺放順序,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法解決下列問(wèn)題:
(1)現(xiàn)從中隨機(jī)抽取一張,記下圖案后放回,再?gòu)闹须S機(jī)抽取一張卡片,求兩次摸到的卡片上印有圖案都是軸對(duì)稱圖形的概率;
(2)現(xiàn)從中隨機(jī)抽取-張,記下圖案后不放回,再?gòu)闹须S機(jī)抽取一張卡片,求兩次摸到的卡片上印有圖案都是中心對(duì)稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點(diǎn),且與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)都是3.
(1)求一次函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)寫出不等式kx+b>﹣的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過(guò)A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,-3),動(dòng)點(diǎn)P在拋物線上.
(1)b =_________,c =_________,點(diǎn)B的坐標(biāo)為_(kāi)____________;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)過(guò)動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長(zhǎng)度最短時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點(diǎn)C(3,2),連接OC.以OC為對(duì)稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過(guò)點(diǎn)A′、B,則k的值是( 。
A. 9B. C.
D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com