日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為
          6
          ,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算AN+
          1
          2
          AM
          的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
          小王:AM顯然是此正五邊形的對(duì)稱軸.
          小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求AN+
          1
          2
          AM
          的值.
          小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
          小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…精英家教網(wǎng)
          在這些同學(xué)的提示下,小趙求出了AN+
          1
          2
          AM
          =
           
          分析:在第二個(gè)圖形中,連接AC,則ABCM的面積等于△ACM的面積與△ABC的面積的和,并且等于五邊形ABCDE的面積的一半.
          解答:精英家教網(wǎng)解:
          設(shè)正五邊形的邊長(zhǎng)是x,則五邊形的面積是
          1
          2
          ×5x•OM=
          5
          6
          2
          x,因而ABCM的面積等于
          5
          6
          4
          x,
          而ABCM的面積=△ACM得面積+△ACB的面積=
          1
          2
          ×
          1
          2
          x•AM+
          1
          2
          x•AN=
          AM
          4
          x+
          1
          2
          x•AN,
          AM
          4
          x+
          1
          2
          x•AN=
          5
          6
          4
          x,
          則:AN+
          1
          2
          AM
          =
          5
          2
          6
          點(diǎn)評(píng):本題應(yīng)用了用整體思想,正確理解兩個(gè)圖形的高,以及面積之間的關(guān)系,是解題關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為數(shù)學(xué)公式,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算數(shù)學(xué)公式的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
          小王:AM顯然是此正五邊形的對(duì)稱軸.
          小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求數(shù)學(xué)公式的值.
          小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
          小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…
          在這些同學(xué)的提示下,小趙求出了數(shù)學(xué)公式=________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          朝暉初中的科技活動(dòng)搞得有聲有色.某班的小趙對(duì)跨湖橋博物館富有創(chuàng)意的獨(dú)木舟形象設(shè)計(jì)很有興趣,他回家后將一正五邊形紙片沿其對(duì)稱軸對(duì)折.旋轉(zhuǎn)放置,做成獨(dú)木舟模型.如圖所示,該正五邊形ABCDE中,O為中心,延長(zhǎng)AO交CD于點(diǎn)M.若OM長(zhǎng)為
          6
          ,AN為獨(dú)木舟船頭A到船底的距離,為了計(jì)算AN+
          1
          2
          AM
          的值,小趙所在的科技小組進(jìn)行了熱烈的討論:
          小王:AM顯然是此正五邊形的對(duì)稱軸.
          小李:AN與AM似乎無(wú)法直接求出,應(yīng)該用整體思想來(lái)求AN+
          1
          2
          AM
          的值.
          小朱:注意到AM⊥CM,AN⊥BC,則AM與AN可看成是三角形的高,能否利用面積法來(lái)求呢?
          小楊:若將點(diǎn)O與正五邊形的各頂點(diǎn)連接,則將此正五邊形的面積五等分…
          精英家教網(wǎng)

          在這些同學(xué)的提示下,小趙求出了AN+
          1
          2
          AM
          =______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案