日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在CB的延長(zhǎng)線上,連接AC,AE,∠ACB=∠BAE=45°

          (1)求證:AE是⊙O的切線;
          (2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的長(zhǎng).

          【答案】
          (1)

          證明:

          連接OA、OB,如圖1所示:

          ∵∠ACB=45°,

          ∴∠AOB=2∠ACB=90°,

          ∵OA=OB,

          ∴∠OAB=∠OBA=45°,

          ∵∠BAE=45°,

          ∴∠OAE=∠OAB+∠BAE=90°,

          ∴AE⊥OA,

          ∴AE是⊙O的切線


          (2)

          解:

          作AF⊥CD于F,如圖2所示:

          ∵AB=AD,

          ,

          ∴∠ACB=∠ACD=45°,

          ∵AF⊥CD,

          ∴∠AFC=∠AFD=90°,

          ∵AC=2 ,

          ∴在Rt△AFC中,AF=CF=ACsin∠ACF=2 × =2,

          ∵在Rt△AFD中,tan∠ADC= =3,

          ∴DF= ,

          ∴CD=CF+DF=2+ =


          【解析】(1)連接OA、OB,由圓周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性質(zhì)得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出結(jié)論;(2)作AF⊥CD于F,證出 ,由圓周角定理得出∠ACB=∠ACD=45°,由三角函數(shù)求出AF=CF=ACsin∠ACF=2,DF= ,即可得出CD的長(zhǎng).
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解切線的判定定理(切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】王大爺家有一塊梯形形狀土地,如圖,ADBC , 對(duì)角線ADBC相交于點(diǎn)O , 王大爺量得AD長(zhǎng)3米,BC長(zhǎng)9米,王大爺準(zhǔn)備在△AOD處種大白菜,那么王大爺種大白菜的面積與整個(gè)土地的面積比為( 。.

          A.1:14
          B.3:14
          C.1:16
          D.3:16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校課外生物小組的試驗(yàn)園地是長(zhǎng)35米、寬20米的矩形,為便于管理,現(xiàn)要在中間開(kāi)辟一橫兩縱三條等寬的小道(如圖),要使種植面積為600平方米,求小道的寬.若設(shè)小道的寬為x米,則可列方程為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點(diǎn),管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點(diǎn)M 處放置了一臺(tái)定位儀器.一個(gè)機(jī)器人在管道內(nèi)勻速行進(jìn),對(duì)管道進(jìn)行檢測(cè).設(shè)機(jī)器人行進(jìn)的時(shí)間為x,機(jī)器人與定位儀器之間的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則機(jī)器人的行進(jìn)路線可能為( )

          A.A→O→D
          B.B→O→D
          C.A→B→O
          D.A→D→O

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點(diǎn),連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點(diǎn)P 的“雙角坐標(biāo)”.例如,點(diǎn)(1,1)的“雙角坐標(biāo)”為(45°,90°).
          (1)點(diǎn)( , )的“雙角坐標(biāo)”為;
          (2)若點(diǎn)P到x軸的距離為 ,則m+n的最小值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點(diǎn),連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點(diǎn)P 的“雙角坐標(biāo)”.例如,點(diǎn)(1,1)的“雙角坐標(biāo)”為(45°,90°).
          (1)點(diǎn)( , )的“雙角坐標(biāo)”為;
          (2)若點(diǎn)P到x軸的距離為 ,則m+n的最小值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
          (1)函數(shù)y=x+ 的自變量x的取值范圍是;
          (2)下列四個(gè)函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是

          (3)對(duì)于函數(shù)y=x+ ,求當(dāng)x>0時(shí),y的取值范圍.
          請(qǐng)將下面求解此問(wèn)題的過(guò)程補(bǔ)充完整:
          解:∵x>0
          ∴y=x+
          =( 2+( 2
          =( 2+
          ∵( 2≥0,
          ∴y
          (4)若函數(shù)y= ,則y的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.

          (1)求這條拋物線的表達(dá)式;
          (2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線y2=﹣3x+t上,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,O為菱形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
          (1)試判斷四邊形OCED的形狀,并說(shuō)明理由;
          (2)若AC=6,BD=8,求線段OE的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案