日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+8ax(a>0)x軸交于O,A兩點(diǎn),頂點(diǎn)為M,對稱軸與x軸交于H,與過O,A,M三點(diǎn)的⊙Q交于點(diǎn)B,⊙Q的半徑為5,點(diǎn)C從點(diǎn)B出發(fā),沿著圓周順時(shí)針向點(diǎn)M運(yùn)動,射線MCx軸交于D,與拋物線交于E,過點(diǎn)EME的垂線交拋物線的對稱軸于點(diǎn)F.

          (1)求拋物線的解析式;

          (2)當(dāng)點(diǎn)C的運(yùn)動路徑長為 時(shí),求證:HD=2HA.

          (3)在點(diǎn)C運(yùn)動過程中.是否存在這樣的位置,使得以點(diǎn)M,EF為頂點(diǎn)的三角形與AHQ相似?若存在,求出此位置時(shí)點(diǎn)E的坐標(biāo);若不存在,請說明理由.

          【答案】(1)y=x2+4x;(2)證明見解析;(3)存在,E(, )E( )

          【解析】

          (1)利用函數(shù)解析式,由y=0可求出拋物線與x軸的兩交點(diǎn)坐標(biāo),利用垂徑定理求出AH的長,再在Rt△AHQ中,利用勾股定理求出HQ的長,由半徑為5,可求出點(diǎn)M的坐標(biāo),然后將點(diǎn)M的坐標(biāo)的函數(shù)解析式,建立關(guān)于a的方程,解方程求出a的值.

          (2)利用弧長公式求出n的值,根據(jù)圓周角定理求出∠BMC的度數(shù),在Rt△HMD中,利用勾股定理求出HD的長,再根據(jù)MH=2AH,可證得結(jié)論.

          (3)分情況討論:當(dāng)∠EMF=∠HQA時(shí),△MEF∽△QHA,利用相似三角形的對應(yīng)邊成比例求出HD的長,可得到點(diǎn)D的坐標(biāo),再利用待定系數(shù)法求出直線MD的函數(shù)解析式,然后求出兩函數(shù)的交點(diǎn)坐標(biāo);當(dāng)∠EMF=∠QAH時(shí),△MEF∽△AHQ,利用相似三角形的對應(yīng)邊成比例求出HD的長,可得到點(diǎn)D的坐標(biāo),再利用待定系數(shù)法求出直線MD的函數(shù)解析式,然后求出兩函數(shù)的交點(diǎn)坐標(biāo),即可得到符合題意的點(diǎn)E的坐標(biāo).

          解:(1)y=0,ax2+8ax=0,解得x1=-8,x2=0,

          ∴A(-8,0)

          由垂徑定理,AH=AO=4,

          Rt△AHQ, HQ=,

          HM=HQ+QM=3+5=8

          ∴M(-4,-8)

          M(-4,-8)代入拋物線得

          解得a=,

          拋物線的解析式為y=x2+4x

          (2)∵點(diǎn)C的路徑為,

          ,解得n=120°,

          ∴∠BMC==60°,

          Rt△HMD, HD==MH

          ∵M(jìn)H=8,AH=4,MH=2HA

          ∴HD=2HA

          (3)存在,E點(diǎn)坐標(biāo)為(, )( ),理由如下:

          已知∠FEM=∠AHQ=90°,

          當(dāng)∠EMF=∠HQA時(shí),△MEF∽△QHA,

          此時(shí)△MHD∽△QHA,

          ,

          解得HD=

          OD=

          ∴D(0),

          設(shè)直線MD解析式為,將M(-4,-8),D(0)代入得,

          ,解得,

          ∴直線MD的解析式為y=x-5,

          將直線MD與拋物線聯(lián)立得,

          ,解得

          此時(shí)E點(diǎn)坐標(biāo)為(,);

          當(dāng)∠EMF=∠QAH時(shí),△MEF∽△AHQ,

          此時(shí)△MHD∽△AHQ,

          ,即

          解得HD=6,

          OD=6-4=2

          ∴D(2,0),

          設(shè)直線MD解析式為,將M(-4,-8),D(2,0)代入得,

          ,解得

          ∴直線MD的解析式為

          將直線MD與拋物線聯(lián)立得,

          ,解得

          此時(shí)E點(diǎn)坐標(biāo)為(,);

          綜上所述,E點(diǎn)坐標(biāo)為(, )(, ).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心,作軸于、兩點(diǎn),交軸于、兩點(diǎn),連結(jié)并延長交于點(diǎn),連結(jié)軸于點(diǎn),連結(jié),.

          1)求弦的長;

          2)求直線的函數(shù)解析式;

          3)連結(jié),求的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知拋物線與坐標(biāo)軸交于A(﹣4,0)、B2,0)、C0,4),連接BC,AC

          1)求拋物線的解析式;

          2)若點(diǎn)E是拋物線在第二象限上的一點(diǎn),過點(diǎn)EDEAC于點(diǎn)D,求DE的最大值.

          3)若點(diǎn)E是拋物線上第二象限上的一動點(diǎn),過點(diǎn)EDEAC于點(diǎn)D,連接CE,若△CDE與△COB相似,直接寫出點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司在甲乙兩地同時(shí)銷售某種品牌的汽車,已知在甲地的總銷售利潤y(單位:萬元)與銷售量x(單位:輛)之間滿足y=﹣x2+10x,在乙地每銷售一輛汽車可獲得2萬元的銷售利潤,若該公司在甲乙兩地共銷售30輛該品牌的汽車,甲乙兩地總的銷售利潤為W萬元,其中在甲地銷售x輛.

          1)求Wx的函數(shù)關(guān)系式;

          2)甲乙兩地各銷售多少輛車時(shí)W最大?W的最大值是多少?

          3)為了開拓甲地市場,公司規(guī)定甲地平均每輛汽車的銷售利潤不高于2萬元,那么公司銷售這30輛汽車可獲得的最大銷售利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線y=x2-(m+1)x+my軸交于(0-3)點(diǎn).

          (1)求出m的值和拋物線與x軸的交點(diǎn);

          (2)x取什么值時(shí),y>0.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,PA、PB為圓O的切線,切點(diǎn)分別為AB,POAB于點(diǎn)C,PO的延長線交圓O于點(diǎn)D,下列結(jié)論不一定成立的是( )

          A. PAPBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗(yàn)結(jié)果:

          每批粒數(shù)n

          100

          300

          400

          600

          1000

          2000

          3000

          發(fā)芽的粒數(shù)m

          96

          282

          382

          570

          948

          1904

          2850

          發(fā)芽的頻率

          0.960

          0.940

          0.955

          0.950

          0.948

          0.952

          0.950

          下面有三個(gè)推斷:

          當(dāng)n為400時(shí),發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;

          隨著試驗(yàn)時(shí)大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計(jì)大豆發(fā)芽的概率是0.95;

          若大豆粒數(shù)n為4000,估計(jì)大豆發(fā)芽的粒數(shù)大約為3800粒.

          其中推斷合理的是( 。

          A. ①②③ B. ①② C. ①③ D. ②③

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)的圖象如圖,點(diǎn)位于坐標(biāo)原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)在二次函數(shù)位于第一象限的圖象上,點(diǎn)在二次函數(shù)位于第二象限的圖象上,四邊形,四邊形,四邊形四邊形都是正方形,則正方形的周長為__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB的直徑,C是半圓AB上一點(diǎn),連AC、OC,AD平分,交弧BCD,交OCE,連OD,CD,下列結(jié)論:

          ①弧CD;②;③;④當(dāng)C是半圓的中點(diǎn)時(shí),則.其中正確的結(jié)論是(

          A.①②③B.①②④C.①③④D.②③④

          查看答案和解析>>

          同步練習(xí)冊答案