日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 作业宝如圖,在Rt△ABC中,∠ACB=90°,如果CD、CM分別是斜邊上的高和中線,AC=2,BC=4,那么下列結(jié)論中錯(cuò)誤的是


          1. A.
            ∠B=30°
          2. B.
            CM=數(shù)學(xué)公式
          3. C.
            CD=數(shù)學(xué)公式數(shù)學(xué)公式
          4. D.
            ∠ACD=∠B
          A
          分析:解直角三角形求出,即可判斷A;求出斜邊,根據(jù)直角三角形性質(zhì)即可求出CM;根據(jù)三角形面積公式即可求出CD;根據(jù)三角形內(nèi)角和定理即可求出∠B=∠ACD.
          解答:A、∵tanB==,
          ∴∠B≠30°,故本選項(xiàng)正確;
          B、由由勾股定理得:AB==2,
          ∵CM是斜邊AB中線,
          ∴CM=AB=,故本選項(xiàng)錯(cuò)誤;
          C、由三角形面積公式得:AC×BC=AB×CD,
          即2×4=2×CD,
          CD=,故本選項(xiàng)錯(cuò)誤;
          D、∵CD⊥AB,
          ∴∠CDA=90°=∠ACB,
          ∴∠A+∠B=90°,∠A+∠ACD=90°,
          ∴∠ACD=∠B,故本選項(xiàng)錯(cuò)誤;
          故選A.
          點(diǎn)評(píng):本題考查了直角三角形性質(zhì),勾股定理,三角形內(nèi)角和定理等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生的推理能力和計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
          (1)求證:BC是⊙O的切線;
          (2)若CD=6,AC=8,求AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
          (1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
          (2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
          (3)如果△CEF與△DEF相似,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,BD⊥AC,sinA=
          3
          5
          ,則cos∠CBD的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
          5
          cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
          (1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
          (t-2)
          (t-2)
          cm,(用含t的代數(shù)式表示).
          (2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
          (3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案