日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線y=-x2+bx-12與x軸相交于A(m,0)、B(n,0)兩點,其中m、n滿足(m-1)(n-1)-5=0(m≠n).
          (1)求拋物線的函數(shù)解析式;
          (2)畫出函數(shù)的圖象與對稱軸,設(shè)Q是拋物線的對稱軸上的任意一點,以Q為圓心,QB長為半徑作圓,過坐標原點O作⊙Q的切線OC,C為切點,求OC的長;
          (3)特別地,要使切點C′恰好在拋物線上,應(yīng)如何確定點C′的位置和圓心Q′的位置?簡述你的作法并在圖中把⊙Q′與切線OC′作出來(要求用尺規(guī)作圖,保留作圖痕跡,寫作法,但不用證明).

          解:(1)∵依題意知m、n是方程-x2+bx-12=0的兩根.
          ∴m+n=b,mn=12,
          ∵(m-1)(n-1)-5=0.
          ∴mn-(m+n)-4=0,
          ∴12-b-4=0,
          ∴b=8,
          ∴拋物線的解析式是y=-x2+8x-12;

          (2)∵由(1)知,拋物線的解析式是y=-x2+8x-12,
          ∴解方程-x2+8x-12=0,得x1=2,x2=6
          ∴OA=2,OB=6(或OA=6,OB=2)
          拋物線的圖象如圖所示,
          ∵Q在拋物線的對稱軸上,
          ∴QA=QB.
          ∴點A在⊙Q上,
          ∵OC是⊙Q的切線,
          ∴OC2=OA•OB=2×6=12
          ∴OC=2;

          (3)作法:①以O(shè)為圓心,OC長為半徑作弧,交拋物線于C′,C′就是所求的切點.
          ②作AC′的垂直平分線交拋物線的對稱軸于Q′,點Q′就是所求的圓心.
          ③以Q′為圓心Q′B(或Q′C′,或Q′A)長為半徑作圓,作直線OC′,則OC′與⊙Q′相切于C′.
          分析:(1)依題意知m、n是方程-x2+bx-12=0的兩根,由根與系數(shù)的關(guān)系可得出m+n及mn的值,再由m、n滿足(m-1)(n-1)-5=0(m≠n)可求出b的值,進而得出拋物線的解析式;
          (2)由(1)知,拋物線的解析式是y=-x2+8x-12,解方程-x2+8x-12=0可得出OA,OB的值,由點Q在拋物線的對稱軸上可知QA=QB,即點A在⊙Q上,根據(jù)
          切線長定理即可得出OC的長;
          (3)①以O(shè)為圓心,OC長為半徑作弧,交拋物線于C′,C′就是所求的切點.
          ②作AC′的垂直平分線交拋物線的對稱軸于Q′,點Q′就是所求的圓心.
          ③以Q′為圓心Q′B(或Q′C′,或Q′A)長為半徑作圓,作直線OC′,則OC′與⊙Q′相切于C′.
          點評:本題考查的是二次函數(shù)綜合題,涉及到韋達定理、切割線定理及用待定系數(shù)法求二次函數(shù)的解析式等相關(guān)知識,難度適中.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2-8x+c的頂點在x軸上,則c等于(  )
          A、4B、8C、-4D、16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點A(x1,0)、B(x2,0)(x1≠x2).
          (1)求a的取值范圍,并證明A、B兩點都在原點O的左側(cè);
          (2)若拋物線與y軸交于點C,且OA+OB=OC-2,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知拋物線y=-x2+bx+c與x軸負半軸交于點A,與y軸正半軸交于點B,且OA=OB.
          精英家教網(wǎng)(1)求b+c的值;
          (2)若點C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
          (3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點P,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)一模)如圖,在平面直角坐標系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點,頂點為M.
          (1)求b、c的值;
          (2)將△OAB繞點B順時針旋轉(zhuǎn)90°后,點A落到點C的位置,該拋物線沿y軸上下平移后經(jīng)過點C,求平移后所得拋物線的表達式;
          (3)設(shè)(2)中平移后所得的拋物線與y軸的交點為A1,頂點為M1,若點P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔南州)已知拋物線y=x2-x-1與x軸的交點為(m,0),則代數(shù)式m2-m+2011的值為( 。

          查看答案和解析>>

          同步練習(xí)冊答案