日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B100的坐標(biāo)為

          【答案】(600,4)
          【解析】解:∵AO=3,BO=4,
          ∴AB=5,
          ∴OA+AB1+B1C2=3+5+4=12,
          ∴B2的橫坐標(biāo)為:12,且B2C2=4,
          ∴B4的橫坐標(biāo)為:2×12=24,
          ∴點(diǎn)B100的橫坐標(biāo)為:50×12=600.
          ∴點(diǎn)B100的縱坐標(biāo)為:4.
          故答案為:(600,4).
          首先根據(jù)已知求出三角形三邊長(zhǎng)度,然后通過旋轉(zhuǎn)發(fā)現(xiàn),B、B2、B4…每偶數(shù)之間的B相差12個(gè)單位長(zhǎng)度,根據(jù)這個(gè)規(guī)律可以求得B100的坐標(biāo).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市啟動(dòng)了第二屆“美麗港城,美在閱讀”全民閱讀活動(dòng),為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:

          閱讀時(shí)間
          x(min)

          0≤x<30

          30≤x<60

          60≤x<90

          x≥90

          合計(jì)

          頻數(shù)

          450

          400

          50

          頻率

          0.4

          0.1

          1


          (1)補(bǔ)全表格;
          (2)將每天閱讀時(shí)間不低于60min的市民稱為“閱讀愛好者”,若我市約有500萬人,請(qǐng)估計(jì)我市能稱為“閱讀愛好者”的市民約有多少萬人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
          (1)[﹣4.5]= , <3.5>=
          (2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是
          (3)已知x,y滿足方程組 ,求x,y的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣2x+8的圖象與x軸,y軸分別交于點(diǎn)A,點(diǎn)C,過點(diǎn)AABx軸,垂足為點(diǎn)A,過點(diǎn)CCBy軸,垂足為點(diǎn)C,兩條垂線相交于點(diǎn)B.

          (1)線段AB,BC,AC的長(zhǎng)分別為AB=   ,BC=   ,AC=   ;

          (2)折疊圖1中的ABC,使點(diǎn)A與點(diǎn)C重合,再將折疊后的圖形展開,折痕DEAB于點(diǎn)D,交AC于點(diǎn)E,連接CD,如圖2.

          請(qǐng)從下列A、B兩題中任選一題作答,我選擇   題.

          A:①求線段AD的長(zhǎng);

          ②在y軸上,是否存在點(diǎn)P,使得APD為等腰三角形?若存在,請(qǐng)直接寫出符合條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          B:①求線段DE的長(zhǎng);

          ②在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得以點(diǎn)A,P,C為頂點(diǎn)的三角形與ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)圖象的頂點(diǎn)在原點(diǎn),直線y= x+4的圖象與該二次函數(shù)的圖象交于點(diǎn)A(m,8),直線與x軸的交點(diǎn)為C,與y軸的交點(diǎn)為B.

          (1)求這個(gè)二次函數(shù)的解析式與B點(diǎn)坐標(biāo);
          (2)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A,B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象的交于點(diǎn)D,與x軸交于點(diǎn)E,設(shè)線段PD長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為t,求h與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
          (3)在(2)的條件下,在線段AB上是否存在點(diǎn)P.使得以點(diǎn)P,E,B為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,,平分,,則圖中共有等腰三角形( )

          A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】直角三角形中,,直線過點(diǎn).

          (1)當(dāng)時(shí),如圖1,分別過點(diǎn)直線于點(diǎn),直線于點(diǎn).是否全等,并說明理由;

          (2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接.點(diǎn)上一點(diǎn),點(diǎn)上一點(diǎn),分別過點(diǎn)、直線于點(diǎn),直線于點(diǎn),點(diǎn)點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)、同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.

          ①當(dāng)為等腰直角三角形時(shí),求的值;

          ②當(dāng)全等時(shí),求的值.

          1 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】課本的作業(yè)題中有這樣一道題:把一張頂角為36°的等腰三角形紙片剪兩刀,分成3張小紙片,使每張小紙片都是等腰三角形,你能辦到嗎?請(qǐng)畫示意圖說明剪法.

          我們有多少種剪法,圖1是其中的一種方法:定義:如果兩條線段將一個(gè)三角形分成3個(gè)等腰三角形,我們把這兩條線段叫做這個(gè)三角形的三分線.

          請(qǐng)你在圖2中用三種不同的方法畫出頂角為45°的等腰三角形的三分線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù);(若兩種方法分得的三角形成3對(duì)全等三角形,則視為同一種)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,除公共邊外,根據(jù)下列括號(hào)內(nèi)三角形全等的條件,在橫線上添加適當(dāng)?shù)臈l件,使全等:

          ________,________;

          ________,________

          ,________;

          ________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案