日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
          (1)求證:點(diǎn)D一定在拋物線n上.
          (2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請(qǐng)說(shuō)明理由.
          (3)若(2)中過(guò)A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)根據(jù)m的解析式可求m與x軸的交點(diǎn)為A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,-4),n與m關(guān)于x軸對(duì)稱,實(shí)際上是n與m的頂點(diǎn)關(guān)于x軸對(duì)稱,即l2的頂點(diǎn)為(0,4),設(shè)頂點(diǎn)式,可求拋物線n的解析式,利用平行四邊形是中心對(duì)稱圖形,A、C關(guān)于原點(diǎn)對(duì)稱,則B、D也關(guān)于原點(diǎn)對(duì)稱,設(shè)點(diǎn)B(m,n),則點(diǎn)D(-m,-n),由于B(m,n)點(diǎn)是y=x2-4上任意一點(diǎn),則n=m2-4,∴-n=-(m2-4)=-m2+4=-(-m)2+4,可知點(diǎn)D(-m,-n)在n,y=-x2+4的圖象上;
          (2)構(gòu)造∠ABC=90°是關(guān)鍵,連接OB,只要證明OB=OC即可,
          (3)求出OB長(zhǎng),過(guò)點(diǎn)B作BH⊥x軸于H,用B的坐標(biāo)為(x,x2-4),可求OB,用OB=OC求x,再計(jì)算面積.
          解答:(1)證明:設(shè)n的解析式為y=ax2+bx+c(a≠0),
          ∵n與x軸的交點(diǎn)為A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,-4),m與n關(guān)于x軸對(duì)稱,
          ∴m過(guò)A(-2,0),C(2,0),頂點(diǎn)坐標(biāo)是(0,4),

          ∴a=-1,b=0,c=4,
          即n的解析式為y=-x2+4,
          設(shè)點(diǎn)B(m,n)為m:y=x2-4上任意一點(diǎn),則n=m2-4,
          ∵四邊形ABCD是平行四邊形,點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱,
          ∴B、D關(guān)于原點(diǎn)O對(duì)稱,
          ∴點(diǎn)D的坐標(biāo)為D(-m,-n).
          由式方程式可知,-n=-(m2-4)=-(-m)2+4,
          即點(diǎn)D的坐標(biāo)滿足y=-x2+4,
          ∴點(diǎn)D在n上.

          (2)解:?ABCD能為矩形.
          過(guò)點(diǎn)B作BH⊥x軸于H,由點(diǎn)B在m:y=x2-4上,可設(shè)點(diǎn)B的坐標(biāo)為(x,x2-4),
          則OH=|x|,BH=|x2-4|.
          易知,當(dāng)且僅當(dāng)BO=AO=2時(shí),?ABCD為矩形.
          在Rt△OBH中,由勾股定理得,|x|2+|x2-4|2=22,
          (x2-4)(x2-3)=0,
          ∴x=±2(舍去)、x.(7分)
          所以,當(dāng)點(diǎn)B坐標(biāo)為B( ,-1)或B′(-,-1)時(shí),?ABCD為矩形,
          此時(shí),點(diǎn)D的坐標(biāo)分別是D(-,1)、D′( ,1).
          因此,符合條件的矩形有且只有2個(gè),即矩形ABCD和矩形AB′CD′.

          (3)解:設(shè)直線AB與y軸交于E,顯然,△AOE∽△AHB,
          =,

          ∴EO=4-2
          由該圖形的對(duì)稱性知矩形ABCD與矩形AB′CD′重合部分是菱形,其面積為
          S=2S△ACE=2××AC×EO=2××4×(4-2 )=16-8
          點(diǎn)評(píng):此題主要考查了二次函數(shù)、相似形、四邊形等知識(shí),三個(gè)小題的坡度設(shè)計(jì)很恰當(dāng),能較好地體現(xiàn)出試題的區(qū)分度,對(duì)第2題的證明過(guò)程要仔細(xì)領(lǐng)悟.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線C0的解析式為y=x2-(a+b)x+
          c24
          ,其中a、b、c分別是△ABC中∠A、∠B、∠精英家教網(wǎng)C所對(duì)邊的長(zhǎng).
          (1)求證:拋物線C0與x軸必有兩個(gè)交點(diǎn);
          (2)設(shè)P、Q是拋物線C0與x軸的兩個(gè)交點(diǎn),求證:P、Q兩點(diǎn)總在x軸的正半軸上;
          (3)設(shè)直線l:y=ax-bc與拋物線交于點(diǎn)E、F,與y軸交于點(diǎn)M,N為拋物線與y軸的交點(diǎn),直線x=a是拋物線的對(duì)稱軸,當(dāng)△MNE的面積是△MNF的面積的5倍時(shí),確定△ABC的形狀.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
          (1)求過(guò)頂點(diǎn)A的雙曲線解析式;
          (2)若開(kāi)口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過(guò)A點(diǎn);
          (3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E精英家教網(wǎng)、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線m的解析式為y=x2-4,與x軸交于A、C兩點(diǎn),B是拋物線m上的動(dòng)點(diǎn)(B不與A、C重合),且B在x軸的下方,拋物線n與拋物線m關(guān)于x軸對(duì)稱,以AC為對(duì)角線的平行四邊形ABCD的第四個(gè)頂點(diǎn)為D.
          (1)求證:點(diǎn)D一定在拋物線n上.
          (2)平行四邊形ABCD能否為矩形?若能為矩形,求出這些矩形公共部分的面積(若只有一個(gè)矩形符合條件,則求此矩形的面積);若不能為矩形,請(qǐng)說(shuō)明理由.
          (3)若(2)中過(guò)A、B、C、D的圓交y軸于E、F,而P是弧CF上一動(dòng)點(diǎn)(不包括C、F兩點(diǎn)),連接AP交y軸于N,連接EP交x軸于M.當(dāng)P在運(yùn)動(dòng)時(shí),四邊形AEMN的面積是否改變?若不變,則求其面積;若變化,請(qǐng)說(shuō)明理由.
          精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知拋物線C1的頂點(diǎn)坐標(biāo)是D(1,4),且經(jīng)過(guò)點(diǎn)C(2,3),又與x軸交于點(diǎn)A、E(點(diǎn)A在點(diǎn)E左邊),與y軸交于點(diǎn)B.
          (1)拋物線C1的表達(dá)式是
          y=-x2+2x+3
          y=-x2+2x+3
          ;
          (2)四邊形ABDE的面積等于
          9
          9
          ;
          (3)問(wèn):△AOB與△DBE相似嗎?并說(shuō)明你的理由;
          (4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F.另一條拋物線C2經(jīng)過(guò)點(diǎn)E(C2與C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸交于點(diǎn)G,并且以M、G、E為頂點(diǎn)的三角形與以點(diǎn)D、E、F為頂點(diǎn)的三角形全等,求a、b的值.(只需寫(xiě)出結(jié)果,不必寫(xiě)解答過(guò)程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知拋物線C1的解析式為y=-x2+2x+8,圖象與y軸交于D點(diǎn),并且頂點(diǎn)A在雙曲線上.
          (1)求過(guò)頂點(diǎn)A的雙曲線解析式;
          (2)若開(kāi)口向上的拋物線C2與C1的形狀、大小完全相同,并且C2的頂點(diǎn)P始終在C1上,證明:拋物線C2一定經(jīng)過(guò)A點(diǎn);
          (3)設(shè)(2)中的拋物線C2的對(duì)稱軸PF與x軸交于F點(diǎn),且與雙曲線交于E點(diǎn),當(dāng)D、O、E、F四點(diǎn)組成的四邊形的面積為16.5時(shí),先求出P點(diǎn)坐標(biāo),并在直線y=x上求一點(diǎn)M,使|MD-MP|的值最大.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案