日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,四邊形OABC是邊長為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過點(diǎn)M作MN∥OA,交BO于點(diǎn)N,連接ND、BM,設(shè)OP=t.

          (1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
          (2)試判斷線段MN的長度是否隨點(diǎn)P的位置的變化而改變?并說明理由.
          (3)當(dāng)t為何值時(shí),四邊形BNDM的面積最。

          【答案】
          (1)

          解:作ME⊥x軸于E,如圖1所示:

          則∠MEP=90°,ME∥AB,

          ∴∠MPE+∠PME=90°,

          ∵四邊形OABC是正方形,

          ∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,

          ∵PM⊥CP,

          ∴∠CPM=90°,

          ∴∠MPE+∠CPO=90°,

          ∴∠PME=∠CPO,

          在△MPE和△PCO中,

          ∴△MPE≌△PCO(AAS),

          ∴ME=PO=t,EP=OC=4,

          ∴OE=t+4,

          ∴點(diǎn)M的坐標(biāo)為:(t+4,t).


          (2)

          解:線段MN的長度不發(fā)生改變;理由如下:

          連接AM,如圖2所示:

          ∵M(jìn)N∥OA,ME∥AB,∠MEA=90°,

          ∴四邊形AEMF是矩形,

          又∵EP=OC=OA,

          ∴AE=PO=t=ME,

          ∴四邊形AEMF是正方形,

          ∴∠MAE=45°=∠BOA,

          ∴AM∥OB,

          ∴四邊形OAMN是平行四邊形,

          ∴MN=OA=4;


          (3)

          解:∵M(jìn)E∥AB,

          ∴△PAD∽△PEM,

          ,

          ,

          ∴AD=t2+t,

          ∴BD=AB﹣AD=4﹣(t2+t)=t2﹣t+4,

          ∵M(jìn)N∥OA,AB⊥OA,

          ∴MN⊥AB,

          ∴四邊形BNDM的面積S=MNBD=×4(t2﹣t+4)=(t﹣2)2+6,

          ∴S是t的二次函數(shù),

          >0,

          ∴S有最小值,

          當(dāng)t=2時(shí),S的值最;

          ∴當(dāng)t=2時(shí),四邊形BNDM的面積最小.


          【解析】(1)作ME⊥x軸于E,則∠MEP=90°,先證出∠PME=∠CPO,再證明△MPE≌△PCO,得出ME=PO=t,EP=OC=4,求出OE,即可得出點(diǎn)M的坐標(biāo);
          (2)連接AM,先證明四邊形AEMF是正方形,得出∠MAE=45°=∠BOA,AM∥OB,證出四邊形OAMN是平行四邊形,即可得出MN=OA=4;
          (3)先證明△PAD∽△PEM,得出比例式,得出AD,求出BD,求出四邊形BNDM的面積S是關(guān)于t的二次函數(shù),即可得出結(jié)果.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長之和為 cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

          (1)求證:△ADE≌△CBF;
          (2)求證:四邊形BFDE為矩形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點(diǎn),以AC為直徑的⊙O與AB邊交于點(diǎn)D,連接DE

          (1)求證:△ABC∽△CBD;
          (2)求證:直線DE是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).

          (1)在平面直角坐標(biāo)系中畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
          (2)把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2 , 點(diǎn)C2在AB上.
          ①旋轉(zhuǎn)角為多少度?
          ②寫出點(diǎn)B2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,圖2,分別是吊車在吊一物品時(shí)的實(shí)物圖與示意圖,已知吊車底盤CD的高度為2米,支架BC的長為4米,且與地面成30°角,吊繩AB與支架BC的夾角為80°,吊臂AC與地面成70°角,求吊車的吊臂頂端A點(diǎn)距地面的高度是多少米?(精確到0.1米)(參考數(shù)據(jù):sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】901班的全體同學(xué)根據(jù)自己的興趣愛好參加了六個(gè)學(xué)生社團(tuán)(每個(gè)學(xué)生必須參加且只參加一個(gè)),為了了解學(xué)生參加社團(tuán)的情況,學(xué)生會(huì)對(duì)該班參加各個(gè)社團(tuán)的人數(shù)進(jìn)行了統(tǒng)計(jì),繪制成了如圖不完整的扇形統(tǒng)計(jì)圖,已知參加“讀書社”的學(xué)生有15人,請(qǐng)解答下列問題:

          (1)該班的學(xué)生共有 人;
          (2)若該班參加“吉他社”與“街舞社”的人數(shù)相同,請(qǐng)你計(jì)算,“吉他社”對(duì)應(yīng)扇形的圓心角的度數(shù);
          (3)901班學(xué)生甲、乙、丙是“愛心社”的優(yōu)秀社員,現(xiàn)要從這三名學(xué)生中隨機(jī)選兩名學(xué)生參加“社區(qū)義工”活動(dòng),請(qǐng)你用畫樹狀圖或列表的方法求出恰好選中甲和乙的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是一臺(tái)自動(dòng)測溫記錄儀的圖象,它反映了我市冬季某天氣溫T隨時(shí)間t變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯(cuò)誤的是( 。

          A.凌晨4時(shí)氣溫最低為﹣3℃
          B.14時(shí)氣溫最高為8℃
          C.從0時(shí)至14時(shí),氣溫隨時(shí)間增長而上升
          D.從14時(shí)至24時(shí),氣溫隨時(shí)間增長而下降

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計(jì)算:
          (1)(﹣2)2+ ﹣(﹣ 0;
          (2)(2x+1)(2x﹣1)﹣4(x+1)2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案