日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.如圖,OB、OC是∠AOD的兩條射線,OM和ON分別是∠AOB和∠COD內(nèi)部的一條射線,且∠AOD=α,∠MON=β.
          (1)當(dāng)∠AOM=∠BOM,∠DON=∠CON時(shí),試用含α和β的代數(shù)式表示∠BOC;
          (2)①當(dāng)∠AOM=2∠BOM,∠DON=2∠CON時(shí),∠BOC等于多少?(用含α和β的代數(shù)式表示)
          ②當(dāng)∠AOM=3∠BOM,∠DON=3∠CON時(shí),∠BOC等于多少?(用含α和β的代數(shù)式表示)
          (3)根據(jù)上面的結(jié)果,請?zhí)羁眨寒?dāng)∠AOM=n∠BOM,∠DON=n∠CON時(shí),∠BOC=$\frac{n+1}{n}$β-$\frac{1}{n}$α.(n是正整數(shù))(用含α和β的代數(shù)式表示).

          分析 (1)根據(jù)∠BOC=∠MON-∠BOM-∠CON,等量代換即可表示出∠BOC的大。
          (2)①當(dāng)∠AOM=2∠BOM,∠DON=2∠CON時(shí),等量代換即可表示出∠BOC的大;②當(dāng)∠AOM=3∠BOM,∠DON=3∠CON時(shí),等量代換即可表示出∠BOC的大。
          (3)當(dāng)∠AOM=n∠BOM,∠DON=n∠CON時(shí),等量代換即可表示出∠BOC的大;

          解答 (1)∵∠AOM=∠BOM=$\frac{1}{2}$∠AOB,∠CON=∠DON=$\frac{1}{2}$∠COD,
          ∵∠BOC=∠MON-∠BOM-∠CON=∠MON-$\frac{1}{2}$∠AOB-$\frac{1}{2}$∠COD=∠MON-$\frac{1}{2}$(∠AOB+∠COD)=∠MON-$\frac{1}{2}$(∠AOD-∠BOC)=β-$\frac{1}{2}$(α-∠BOC)=β-$\frac{1}{2}$α+$\frac{1}{2}$∠BOC,
          則∠BOC=2β-α.
          (2)①當(dāng)∠AOM=2∠BOM,∠DON=2∠CON時(shí),
          ∵∠BOM+∠CON=$\frac{1}{2}$(∠AOM+∠DON)=$\frac{1}{2}$(α-β),
          ∴∠BOC=∠MON-(∠BOM+∠CON)=β-$\frac{1}{2}$(α-β)=$\frac{3}{2}$β-$\frac{1}{2}$α;
          ②當(dāng)∠AOM=3∠BOM,∠DON=3∠CON時(shí),
          ∵∠BOM+∠CON=$\frac{1}{3}$(∠AOM+∠DON)=$\frac{1}{3}$(α-β),
          ∴∠BOC=∠MON-(∠BOM+∠CON)=β-$\frac{1}{3}$(α-β)=$\frac{4}{3}$β-$\frac{1}{3}$α;
          (3)當(dāng)∠AOM=n∠BOM,∠DON=n∠CON時(shí),
          ∵∠BOM+∠CON=$\frac{1}{n}$(∠AOM+∠DON)=$\frac{1}{n}$(α-β),
          ∴∠BOC=∠MON-(∠BOM+∠CON)=β-$\frac{1}{n}$(α-β)=$\frac{n+1}{n}$β-$\frac{1}{n}$α;
          故答案為:$\frac{n+1}{n}$β-$\frac{1}{n}$α.

          點(diǎn)評 此題考查了角的計(jì)算,以及角平分線定義,利用了等量代換的思想,熟練掌握角平分線定義是解本題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          9.如圖,已知AB∥CD,AD、BC相交于點(diǎn)E,點(diǎn)F在ED上,且∠CBF=∠D.
          (1)求證:FB2=FE•FA;
          (2)若BF=3,EF=2,求△ABE與△BEF的面積之比.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          10.下列圖形都是由同樣大小的⊙按一定規(guī)律所組成的,其中第1個(gè)圖形中一共有5個(gè)⊙,第2個(gè)圖形中一共有8個(gè)⊙,第3個(gè)圖形中一共有11個(gè)⊙,第4個(gè)圖形中一共有14個(gè)⊙,…,按此規(guī)律排列,第1001個(gè)圖形中基本圖形的個(gè)數(shù)為( 。
          A.2998B.3001C.3002D.3005

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          7.解方程組
          (1)$\left\{\begin{array}{l}3x+2y=14\\ 3x-4y=2\end{array}\right.$
          (2)$\left\{\begin{array}{l}2x+3y=13\\ 3x+1=y+4\end{array}\right.$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          14.閱讀下列材料:
          有這樣一個(gè)問題:關(guān)于x 的一元二次方程a x2+bx+c=0(a>0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿足的條件.
          小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:
          ①設(shè)一元二次方程ax2+bx+c=0(a>0)對應(yīng)的二次函數(shù)為y=ax2+bx+c(a>0);
          ②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:
          方程根的幾何意義:請將(2)補(bǔ)充完整
          方程兩根的情況對應(yīng)的二次函數(shù)的大致圖象a,b,c滿足的條件
          方程有兩個(gè)
          不相等的負(fù)實(shí)根
          $\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}<0\\ c>0.\end{array}\right.$
          方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根$\left\{\begin{array}{l}a>0\\ c<0.\end{array}\right.$
          方程有兩個(gè)
          不相等的正實(shí)根
          $\left\{\begin{array}{l}a>0\\△={b^2}-4ac>0\\-\frac{2a}>0\\ c>0.\end{array}\right.$
          (1)參考小明的做法,把上述表格補(bǔ)充完整;
          (2)若一元二次方程mx2-(2m+3)x-4m=0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          4.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)為(0,-1),點(diǎn)C(m,0)是x軸上的一個(gè)動(dòng)點(diǎn).
          (1)如圖1,點(diǎn)B在第四象限,△AOB和△BCD都是等邊三角形,點(diǎn)D在BC的上方,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)到如圖所示的位置時(shí),連接AD,請證明△ABD≌△OBC;
          (2)如圖2,點(diǎn)B在x軸的正半軸上,△ABO和△ACD都是等腰直角三角形,點(diǎn)D在AC的上方,∠D=90°,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)(m>1)時(shí),設(shè)點(diǎn)D的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達(dá)式;
          (3)如圖3,四邊形ACEF是菱形,且∠ACE=90°,點(diǎn)E在AC的上方,當(dāng)點(diǎn)C在x軸上運(yùn)動(dòng)(m>1)時(shí),設(shè)點(diǎn)E的坐標(biāo)為(x,y),請?zhí)角髖與x之間的函數(shù)表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          11.解不等式組$\left\{\begin{array}{l}5x+3≥2x…(1)\\ \frac{3x-1}{2}<4…(2)\end{array}\right.$,并把解表示在數(shù)軸上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:填空題

          8.在平面直角坐標(biāo)中,點(diǎn)A的坐標(biāo)是(-3,4),若點(diǎn)A與點(diǎn)B關(guān)于原點(diǎn)對稱,則點(diǎn)B的坐標(biāo)為(3,-4).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          9.用四舍五入法,分別按要求取0.05026的近似值,下列四個(gè)結(jié)果中錯(cuò)誤的是( 。
          A.0.1(精確到0.1)B.0.05(精確到0.01)
          C.0.05(精確到0.001)D.0.0503(精確到0.0001)

          查看答案和解析>>

          同步練習(xí)冊答案