日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點,以AC為直徑的⊙O與AB邊交于點D,連接DE

          (1)求證:△ABC∽△CBD;
          (2)求證:直線DE是⊙O的切線.

          【答案】
          (1)

          證明:∵AC為⊙O的直徑,

          ∴∠ADC=90°,

          ∴∠BDC=90°,

          又∵∠ACB=90°,

          ∴∠ACB=∠BDC,

          又∵∠B=∠B,

          ∴△BCD∽△BAC;


          (2)

          證明:連結(jié)DO,如圖,

          ∵∠BDC=90°,E為BC的中點,

          ∴DE=CE=BE,

          ∴∠EDC=∠ECD,

          又∵OD=OC,

          ∴∠ODC=∠OCD,

          而∠OCD+∠DCE=∠ACB=90°,

          ∴∠EDC+∠ODC=90°,即∠EDO=90°,

          ∴DE⊥OD,

          ∴DE與⊙O相切.


          【解析】(1)根據(jù)AC為⊙O的直徑,得出△BCD為Rt△,通過已知條件證明△BCD∽△BAC即可;
          (2)連結(jié)DO,如圖,根據(jù)直角三角形斜邊上的中線性質(zhì),由∠BDC=90°,E為BC的中點得到DE=CE=BE,則利用等腰三角形的性質(zhì)得∠EDC=∠ECD,∠ODC=∠OCD,由于∠OCD+∠DCE=∠ACB=90°,所以∠EDC+∠ODC=90°,即∠EDO=90°,于是根據(jù)切線的判定定理即可得到DE與⊙O相切.
          【考點精析】本題主要考查了切線的判定定理和相似三角形的判定與性質(zhì)的相關(guān)知識點,需要掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀理解:如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
          將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應(yīng)點,點D′為點D的對應(yīng)點,連接EB′,F(xiàn)D′相交于點O.

          (1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是
          (2)當(dāng)圖③中的∠BCD=120°時,∠AEB′=
          (3)當(dāng)圖②中的四邊形AECF為菱形時,對應(yīng)圖③中的“完美箏形”有  個(包含四邊形ABCD).
          (4)拓展提升:當(dāng)圖③中的∠BCD=90°時,連接AB′,請?zhí)角蟆螦B′E的度數(shù),并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長均為1的正方形網(wǎng)格紙上有一個△ABC,頂點A、B、C及點O均在格點上,請按要求完成以下操作或運算:

          (1)將△ABC向上平移4個單位,得到△A1B1C1(不寫作法,但要標(biāo)出字母)
          (2)將△ABC繞點O旋轉(zhuǎn)180°,得到△A2B2C2(不寫作法,但要標(biāo)出字母)
          (3)求點A繞著點O旋轉(zhuǎn)到點A2所經(jīng)過的路徑長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點,點P在線段OA上,從點O出發(fā),向點A以1個單位/秒的速度勻速運動;同時,點Q在線段AB上,從點A出發(fā),向點B以個單位/秒的速度勻速運動,連接PQ,設(shè)運動時間為t秒.

          (1)求拋物線的解析式;
          (2)問:當(dāng)t為何值時,△APQ為直角三角形;
          (3)過點P作PE∥y軸,交AB于點E,過點Q作QF∥y軸,交拋物線于點F,連接EF,當(dāng)EF∥PQ時,求點F的坐標(biāo).
          (4)設(shè)拋物線頂點為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點的三角形與以O(shè),B,P為頂點的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,P為正方形ABCD的邊BC上一動點(P與B、C不重合),連接AP,過點B作BQ⊥AP交CD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′交BA的延長線于點M.

          (1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論
          (2)當(dāng)AB=3,BP=2PC,求QM的長;
          (3)當(dāng)BP=m,PC=n時,求AM的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△A1B1A2 , △A2B2A3 , △A3B3A4 , …,△AnBnAn+1都是等腰直角三角形,其中點A1、A2、…、An在x軸上,點B1、B2、…、Bn在直線y=x上,已知OA1=1,則OA2015的長為 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形OABC是邊長為4的正方形,點P為OA邊上任意一點(與點O、A不重合),連接CP,過點P作PM⊥CP交AB于點D,且PM=CP,過點M作MN∥OA,交BO于點N,連接ND、BM,設(shè)OP=t.

          (1)求點M的坐標(biāo)(用含t的代數(shù)式表示);
          (2)試判斷線段MN的長度是否隨點P的位置的變化而改變?并說明理由.
          (3)當(dāng)t為何值時,四邊形BNDM的面積最。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過E,A′兩點.

          (1)填空:∠AOB= °,用m表示點A′的坐標(biāo):A′( , );
          (2)當(dāng)拋物線的頂點為A′,拋物線與線段AB交于點P,且=時,△D′OE與△ABC是否相似?說明理由;
          (3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
          ①求a,b,m滿足的關(guān)系式;
          ②當(dāng)m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,點O是△ABC的內(nèi)心,連接OB,OC,過點O作EF∥BC分別交AB,AC于點E,F(xiàn).已知△ABC的周長為8,BC=x,△AEF的周長為y,則表示y與x的函數(shù)圖象大致是( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          同步練習(xí)冊答案