日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2002•武漢)已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,AC、BD相交于N點,連接ON、NP.下列結論:①四邊形ANPD是梯形;②ON=NP;③PA為∠NPD的平分線.其中一定成立的是( )

          A.①②
          B.②③
          C.①③
          D.①
          【答案】分析:①根據(jù)切線長定理,運用比例線段判斷AD∥NP;
          ②沒有依據(jù);
          ③根據(jù)AD=DP,AD∥NP求解.
          解答:解:①因為DA、DP、CP、CB為⊙O切線,故DA⊥AB,CB⊥AB.
          于是AD∥BC,AD=DP,CB=CP.
          由于△AND∽△CNB,所以==,
          故NP∥AD,四邊形ANPD是梯形;
          ②不能確定;
          ③因為DA=DP,所以∠DAP=∠DPA.
          因為NP∥AD,所以∠NPA=∠DAP.
          所以∠DPA=∠NPA.
          PA為∠NPD的平分線.
          故選C.
          點評:此題難度較大,綜合考查了相似三角形的性質(zhì),切線的性質(zhì)及平行線分線段成比例定理,對同學們的推理能力有較高要求.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

          (2002•武漢)已知拋物線交x軸于A(x1,0)、B(x2,0),交y軸于C點,且x1<0<x2,(AO+OB)2=12CO+1.
          (1)求拋物線的解析式;
          (2)在x軸的下方是否存在著拋物線上的點P,使∠APB為銳角?若存在,求出P點的橫坐標的范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

          (2002•武漢)已知一次函數(shù)y=kx+b在x=3時的值為5,在x=-4時的值為-9,求這個一次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2002年湖北省武漢市中考數(shù)學試卷(解析版) 題型:解答題

          (2002•武漢)已知拋物線交x軸于A(x1,0)、B(x2,0),交y軸于C點,且x1<0<x2,(AO+OB)2=12CO+1.
          (1)求拋物線的解析式;
          (2)在x軸的下方是否存在著拋物線上的點P,使∠APB為銳角?若存在,求出P點的橫坐標的范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2002年湖北省武漢市中考數(shù)學試卷(解析版) 題型:解答題

          (2002•武漢)已知一次函數(shù)y=kx+b在x=3時的值為5,在x=-4時的值為-9,求這個一次函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(13)(解析版) 題型:解答題

          (2002•武漢)已知:如圖,⊙O和⊙O1內(nèi)切于A,直線OO1交⊙O于另一點B、交⊙O1于另一點F,過B點作⊙O1的切線,切點為D,交⊙O于C點,DE⊥AB,垂足為E.
          (1)求證:CD=DE;
          (2)若將兩圓內(nèi)切改為外切,其它條件不變,(1)中的結論是否成立?請證明你的結論.

          查看答案和解析>>

          同步練習冊答案