日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在平面直角坐標(biāo)系中,等邊中,BC∥軸,且BC=,頂點(diǎn)A在拋物線(xiàn)上運(yùn)動(dòng).

          (1)當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),頂點(diǎn)C是否在該拋物線(xiàn)上?
          (2)在運(yùn)動(dòng)過(guò)程中有可能被軸分成兩部分,當(dāng)上下兩部分的面積之比為1:8(即)時(shí),求頂點(diǎn)A的坐標(biāo);
          (3)在運(yùn)動(dòng)過(guò)程中,當(dāng)頂點(diǎn)B落在坐標(biāo)軸上時(shí),直接寫(xiě)出頂點(diǎn)C的坐標(biāo).
          (1)在;(2);(3)、、

          試題分析:(1)當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),設(shè)BC與y軸交于點(diǎn)D,由BC∥x軸,BC=AC=,可得,即可得到C點(diǎn)的坐標(biāo),再代入拋物線(xiàn)解析式即可作出判斷;
          (2)過(guò)點(diǎn)A作于點(diǎn)D,設(shè)點(diǎn)A的坐標(biāo)為(,).由根據(jù)相似三角形的性質(zhì)可得,再根據(jù)等邊三角形的性質(zhì)可求得的長(zhǎng),即可求得結(jié)果;
          (3)根據(jù)函數(shù)圖象上的點(diǎn)的坐標(biāo)的特征結(jié)合二次函數(shù)的性質(zhì)求解即可.
          (1)當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),設(shè)BC與y軸交于點(diǎn)D
          ∵BC∥x軸,BC=AC=

          ∴C點(diǎn)的坐標(biāo)為
          ∵當(dāng)時(shí),
          ∴當(dāng)頂點(diǎn)A運(yùn)動(dòng)至與原點(diǎn)重合時(shí),頂點(diǎn)C在拋物線(xiàn)上;
          (2)過(guò)點(diǎn)A作于點(diǎn)D,

          設(shè)點(diǎn)A的坐標(biāo)為().
          ,

          ∵等邊的邊長(zhǎng)為,


          ,解得
          ∴頂點(diǎn)A的坐標(biāo)為;
          (3)當(dāng)頂點(diǎn)B落在坐標(biāo)軸上時(shí),頂點(diǎn)C的坐標(biāo)為、
          點(diǎn)評(píng):此類(lèi)問(wèn)題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見(jiàn),一般以壓軸題形式出現(xiàn),難度較大.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,直線(xiàn)與拋物線(xiàn)相交于A,B兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且。
          (1)求b的值;
          (2)求證:點(diǎn)在反比例函數(shù)的圖象上;
          (3)求證:。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          一條拋物線(xiàn)具有下列性質(zhì):(1)經(jīng)過(guò)點(diǎn)A(0,3);(2)在y軸左側(cè)的部分是上升的,在y軸右側(cè)的部分是下降的. 試寫(xiě)出一個(gè)滿(mǎn)足這兩條性質(zhì)的拋物線(xiàn)的表達(dá)式.          

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知兩直線(xiàn)l1,l2分別經(jīng)過(guò)點(diǎn)A(1,0),點(diǎn)B(﹣3,0),并且當(dāng)兩直線(xiàn)同時(shí)相交于y軸正半軸的點(diǎn)C時(shí),恰好有l(wèi)1⊥l2,經(jīng)過(guò)點(diǎn)A、B、C的拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)l1交于點(diǎn)K,如圖所示.

          (1)求點(diǎn)C的坐標(biāo),并求出拋物線(xiàn)的函數(shù)解析式;
          (2)拋物線(xiàn)的對(duì)稱(chēng)軸被直線(xiàn)l1,拋物線(xiàn),直線(xiàn)l2和x軸依次截得三條線(xiàn)段,問(wèn)這三條線(xiàn)段有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
          (3)當(dāng)直線(xiàn)l2繞點(diǎn)C旋轉(zhuǎn)時(shí),與拋物線(xiàn)的另一個(gè)交點(diǎn)為M,請(qǐng)找出使△MCK為等腰三角形的點(diǎn)M,簡(jiǎn)述理由,并寫(xiě)出點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,拋物線(xiàn)的頂點(diǎn)為H,與軸交于A、B兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),點(diǎn)H、B關(guān)于直線(xiàn):對(duì)稱(chēng),過(guò)點(diǎn)B作直線(xiàn)BK∥AH交直線(xiàn)于K點(diǎn).  
                                     
          (1)求A、B兩點(diǎn)坐標(biāo),并證明點(diǎn)A在直線(xiàn)上;                        
          (2)求此拋物線(xiàn)的解析式;                                          
          (3)將此拋物線(xiàn)向上平移,當(dāng)拋物線(xiàn)經(jīng)過(guò)K點(diǎn)時(shí),設(shè)頂點(diǎn)為N,求出NK的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,已知⊙P的半徑為2,圓心P在拋物線(xiàn)上運(yùn)動(dòng),當(dāng)⊙P與軸相切時(shí),
          圓心P的坐標(biāo)為       

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知拋物線(xiàn)

          (1)求證:無(wú)論為任何實(shí)數(shù),拋物線(xiàn)與x軸總有兩個(gè)交點(diǎn);
          (2)若為整數(shù),當(dāng)關(guān)于x的方程的兩個(gè)有理數(shù)根都在之間(不包括-1、)時(shí),求的值.
          (3)在(2)的條件下,將拋物線(xiàn)在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個(gè)新圖象,再將圖象向上平移個(gè)單位,若圖象與過(guò)點(diǎn)(0,3)且與x軸平行的直線(xiàn)有4個(gè)交點(diǎn),直接寫(xiě)出n的取值范圍是                

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某商廈將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
          (1)假設(shè)每臺(tái)冰箱降價(jià)50x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出yx之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
          (2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
          (3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,已知二次函數(shù)的圖像與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,連接AC,點(diǎn)P是拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),記△APC的面積為S,當(dāng)S=2時(shí),相應(yīng)的點(diǎn)P的個(gè)數(shù)是(   )
          A.4 個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案