日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC內接于⊙O,CD是⊙O的直徑,ABCD交于點E,點PCD延長線上的一點,AP=AC,且∠B=2∠P.

          (1)求證:∠B=2∠PCA.

          (2)求證:PA是⊙O的切線;

          (3)若點B位于直徑CD的下方,CD平分∠ACB,試判斷此時AEBE的大小關系,并說明由.

          【答案】(1)詳見解析;(2)詳見解析;(3)AE=EB,理由詳見解析.

          【解析】

          (1)根據(jù)等腰三角形的性質,得到∠P=ACP,根據(jù)∠B=2P,即可證明.

          (2)連接OA、AD,根據(jù)圓周角定理得到,則∠ADC=2P=2ACP,可得∠ADC=60°,ACP=30°,求出∠OAP=90°,即可得到OAPA,即可證明PA是⊙O的切線;

          (3) CD平分∠ACB,得到 得到=,根據(jù)垂徑定理及其推理即可得到結論.

          證明:(1)AP=AC,

          ∴∠P=ACP,

          ∵∠B=2P,

          ∴∠B=2ACP,

          (2)連接OA、AD,如圖,則∠B=ADC,

          ∴∠ADC=2P,

          CD為直徑,

          ∴∠DAC=90°,

          ∴∠ADC=60°,C=30°,

          ∴△ADO為等邊三角形,

          ∴∠AOP=60°,

          而∠P=ACP=30°,

          ∴∠OAP=90°,

          OAPA,

          PA是⊙O的切線;

          (3)AE=EB.

          CD平分∠ACB,

          =.

          根據(jù)垂徑定理的推論可知,AE=EB.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動.

          (1)當t=5秒時,點P走過的路徑長為_________;當t=_________秒時,點P與點E重合;

          (2)當點P在AC邊上運動時,連結PE,并過點E作AB的垂線,垂足為H. 若以C、P、E為頂點的三角形與△EFH相似,試求線段EH的值;

          (3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點Q.在運動過程中,若形成的四邊形PEQF為菱形,求t的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABC,OAC邊上的一個動點,過點O作直線MNBC,MNBCA的外角平分線CF于點F,ACB內角平分線CEE

          1求證:EO=FO;

          2當點O運動到何處時四邊形AECF是矩形?并證明你的結論;

          3AC邊上存在點O使四邊形AECF是正方形,猜想ABC的形狀并證明你的結論。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內的一個動點,且點P的橫坐標為t.

          (1)求拋物線的表達式;

          (2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

          (3)如圖2,連接BC,PB,PC,設PBC的面積為S.

          ①求S關于t的函數(shù)表達式;

          ②求P點到直線BC的距離的最大值,并求出此時點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,AB是⊙O的直徑,AC為弦,∠BAC的平分線交⊙O于點D,過點D的切線交AC的延長線于點G.

          求證:(1)DG⊥AG;

          (2)AG+CG=AB.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】直角ABC中,∠ACB=90°AC=3cm,BC=4cm,AB=5cm,如果AD平分∠BAC,且ADCD,那么點DAB的距離為 ______cm.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下列關于的二次三項式中(表示實數(shù)),在實數(shù)范圍內一定能分解因式的是(

          A. B.

          C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,在△ABC中,CDAB上的中線,且DADBDC

          1)已知∠A30°,求∠ACB的度數(shù);

          2)已知∠A40°,求∠ACB的度數(shù);

          3)已知∠Ax°,求∠ACB的度數(shù);

          4)請你根據(jù)解題結果歸納出一個結論.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】綜合探究題

          在之前的學習中,我們已經(jīng)初步了解到,長方形的對邊平行且相等,每個角都是.如圖,長方形中,,為邊上一動點,從點出發(fā),以向終點運動,同時動點從點出發(fā),以向終點運動,運動的時間為.

          1)當時,①則線段的長=______;

          ②當平分時,求的值;

          2)若,且是以為腰的等腰三角形,求的值;

          3)連接,直接寫出點與點關于對稱時的值.

          查看答案和解析>>

          同步練習冊答案