日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在邊長為1的正方形ABCD中,一直角三角尺PQR的直角頂點P在對角線AC上移動,直角邊PQ經(jīng)過點D,另一直角邊與射線BC交于點E.
          (1)試判斷PE與PD的大小關(guān)系,并證明你的結(jié)論;
          (2)連接PB,試證明:△PBE為等腰三角形.
          分析:(1)作輔助線:過點P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA),然后由全等三角形的對應(yīng)邊相等證明PE=PD;
          (2)由正方形的四條邊相等,對角線平分對角的性質(zhì)證明△APB≌△APD(SAS),然后由全等三角形的對應(yīng)邊相等證明PB=PD;利用(1)的結(jié)論,由等量代換證明PE=PB,即△PBE為等腰三角形;
          解答: (1)解:PE=PD.
          證明:過點P作GF∥AB,分別交AD、BC于G、F.
          如圖所示.
          ∵四邊形ABCD是正方形,
          ∴四邊形ABFG和四邊形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形,
          ∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°;
          又∵∠1+∠3=∠2+∠3=90°,
          ∴∠1=∠2;
          又PF=GD,∠PFE=∠PGD=90°,
          ∴Rt△EFP≌Rt△PGD(ASA),
          ∴PE=PD;

          (2)證明:∵AD=AB,∠PAB=∠PAD=45°,AP=AP,
          ∴△APB≌△APD(SAS),
          ∴PB=PD,
          ∴PE=PB,
          ∴△PBE為等腰三角形.
          點評:本題綜合考查了正方形的性質(zhì)、等腰三角形的性質(zhì)及全等三角形的判定與性質(zhì).解答此題的關(guān)鍵是通過作輔助線:過點P作GF∥AB,分別交AD、BC于G、F,構(gòu)建全等三角形Rt△EFP≌Rt△PGD(ASA).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長為a的正方形中,剪去一個邊長為b的小正方形(a>b),將余下部分拼成一個梯形,根據(jù)兩個圖形陰影部分面積的關(guān)系,可以得到一個關(guān)于a、b的恒等式為( 。
          精英家教網(wǎng)
          A、(a-b)2=a2-2ab+b2B、(a+b)2=a2+2ab+b2C、a2-b2=(a+b)(a-b)D、a2+ab=a(a+b)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          5、如圖所示,在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個矩形,通過計算圖形(陰影部分的面積),驗證了一個等式是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后的圖形△A′B′C′,并計算對應(yīng)點B和B′之間的距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°,再向下平移2格后的圖形△A′B′C′.

          查看答案和解析>>

          同步練習(xí)冊答案