日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•錦州)如圖,AB為⊙O的直徑,D是弧BC的中點(diǎn),DE⊥AC交AC的延長(zhǎng)線于E,⊙O的切線BF交AD的延長(zhǎng)線于F.
          (1)求證:DE是⊙O的切線;
          (2)若DE=3,⊙O的半徑為5.求BF的長(zhǎng).

          【答案】分析:(1)連接BC、OD,由D是弧BC的中點(diǎn),可知:OD⊥BC;由OB為⊙O的直徑,可得:BC⊥AC,根據(jù)DE⊥AC,可證OD⊥DE,從而可證DE是⊙O的切線;
          (2)在Rt△ABC中,運(yùn)用勾股定理可將愛那個(gè)AC的長(zhǎng)求出,運(yùn)用切割線定理可將AE的長(zhǎng)求出,根據(jù)△AED∽△ABF,可將BF的長(zhǎng)求出.
          解答:(1)證明:連接OD,BC,OD與BC相交于點(diǎn)G,
          ∵D是弧BC的中點(diǎn),
          ∴OD垂直平分BC,
          ∵AB為⊙O的直徑,
          ∴AC⊥BC,
          ∴OD∥AE.
          ∵DE⊥AC,
          ∴OD⊥DE,
          ∵OD為⊙O的半徑,
          ∴DE是⊙O的切線.

          (2)解:由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
          ∴四邊形DECG為矩形,
          ∴CG=DE=3,
          ∴BC=6.
          ∵⊙O的半徑為5,
          ∴AB=10,
          ∴AC==8,
          由(1)知:DE為⊙O的切線,
          ∴DE2=EC•EA,即32=(EA-8)EA,
          解得:AE=9.
          ∵D為弧BC的中點(diǎn),
          ∴∠EAD=∠FAB,
          ∵BF切⊙O于B,
          ∴∠FBA=90°.
          又∵DE⊥AC于E,
          ∴∠E=90°,
          ∴∠FBA=∠E,
          ∴△AED∽△ABF,

          ,
          ∴BF=
          點(diǎn)評(píng):本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
          (1)求這條拋物線的解析式;
          (2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

          (2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
          (1)求這條拋物線的解析式;
          (2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)模擬試卷(7)(解析版) 題型:解答題

          (2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
          (1)求這條拋物線的解析式;
          (2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年遼寧省錦州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
          (1)求這條拋物線的解析式;
          (2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年湖北省某市新人教版中考數(shù)學(xué)模擬試卷(6)(解析版) 題型:解答題

          (2010•錦州)如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點(diǎn),且x1>x2,與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2-2x-8=0的兩個(gè)根.
          (1)求這條拋物線的解析式;
          (2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PE∥AC,交BC于點(diǎn)E,連接CP,當(dāng)△CPE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
          (3)探究:若點(diǎn)Q是拋物線對(duì)稱軸上的點(diǎn),是否存在這樣的點(diǎn)Q,使△QBC成為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案