日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在平面直角坐標(biāo)系中,直線y=x+1與y=-
          3
          4
          x+3
          分別交x軸于點(diǎn)B和點(diǎn)C,點(diǎn)D是直線y=-
          3
          4
          x+3
          與y軸的交點(diǎn).
          (1)求點(diǎn)B、C、D的坐標(biāo);
          (2)設(shè)M(x,y)是直線y=x+1上一點(diǎn),△BCM的面積為S,請寫出S與x的函數(shù)關(guān)系式;來探究當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí),△BCM的面積為10,并說明理由.
          (3)線段CD上是否存在點(diǎn)P,使△CBP為等腰三角形,如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由.
          分析:(1)把x=0或y=0分別代入解析式,求出即可;
          (2)求出BC,得到M(x,x+1),過M作MN⊥x軸于N,①當(dāng)M在x軸的上方時(shí),MN=x+1,②當(dāng)M在x軸的下方時(shí),MN=-x-1,根據(jù)三角形的面積公式求出即可;
          (3)求出CD,有三種情況:①CB=CP時(shí),此時(shí)P與D重合,求出P的坐標(biāo);②BP=PC時(shí),此時(shí)P在BC的垂直平分線上,求出P的橫坐標(biāo)x,代入y=-
          3
          4
          x+3求出y即可;③BC=BP時(shí),設(shè)P(x,-
          3
          4
          x+3),根據(jù)勾股定理和CB=BP得出方程,求出方程的解即可.
          解答:(1)解:把y=0代入y=x+1得:0=x+1,
          ∴x=-1,
          ∴B(-1,0),
          當(dāng)x=0時(shí),y=-
          3
          4
          x+3=0,
          ∴D(0,3),
          把y=0代入y=-
          3
          4
          x+3得:0=-
          3
          4
          x+3,
          ∴x=4,
          ∴C(4,0),
          答:B(-1,0),C(4,0),D(0,3).

          (2)解:BC=4-(-1)=5,
          ∵M(jìn)(x,y)在y=x+1上,
          ∴M(x,x+1),
          過M作MN⊥x軸于N,
          ①當(dāng)M在x軸的上方時(shí),MN=x+1,
          ∴S=
          1
          2
          BC×MN=
          1
          2
          ×5×(x+1)=
          5
          2
          x+
          5
          2
          ;
          ②當(dāng)M在x軸的下方時(shí),MN=|x+1|=-x-1,
          ∴S=
          1
          2
          BC×MN=
          1
          2
          ×5×(-x-1)=-
          5
          2
          x-
          5
          2

          把s=10代入得:10=
          5
          2
          x+
          5
          2
          得:x=3,x+1=4;
          把s=10代入y=-
          5
          2
          x-
          5
          2
          得:x=5=-5,x+1=-4;
          ∴M(3,4)或(-5,-4)時(shí),s=10;
          即S與x的函數(shù)關(guān)系式是
          y=
          5
          2
          x+
          5
          2
          (x>-1)
          y=-
          5
          2
          x-
          5
          2
          (x<-1)
          ,點(diǎn)M運(yùn)動(dòng)到(3,4)或(-5,-4)時(shí),△BCM的面積為10.

          (3)解:由勾股定理得:CD=
          OC2+OD2
          =5,
          有三種情況:
          ①CB=CP=5時(shí),此時(shí)P與D重合,P的坐標(biāo)是(0,3);
          ②BP=PC時(shí),此時(shí)P在BC的垂直平分線上,P的橫坐標(biāo)是x=
          4+(-1)
          2
          =
          3
          2
          ,
          代入y=-
          3
          4
          x+3得:y=
          15
          8
          ,∴P(
          3
          2
          ,
          15
          8
          );
          ③BC=BP時(shí),設(shè)P(x,-
          3
          4
          x+3),
          根據(jù)勾股定理得:(x+1)2+(-
          3
          4
          x+3-0)
          2
          =52,
          解得:x=-
          12
          5
          ,x=4,
          ∵P在線段CD上,∴x=-
          12
          5
          舍去,
          當(dāng)x=4時(shí),與C重合,舍去,
          ∴存在點(diǎn)P,使△CBP為等腰三角形,P點(diǎn)的坐標(biāo)是(0,3)或(
          3
          2
          ,
          15
          8
          ).
          點(diǎn)評(píng):本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,等腰三角形的性質(zhì),三角形的面積,點(diǎn)的坐標(biāo)等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行計(jì)算的能力,同時(shí)也培養(yǎng)了學(xué)生分析問題和解決問題的能力,題目比較典型,綜合性比較強(qiáng).分類討論思想的運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
          9x
          的圖象在第一象限相精英家教網(wǎng)交于點(diǎn)A,過點(diǎn)A分別作x軸、y軸的垂線,垂足為點(diǎn)B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          5、如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(-2,0)和(2,0).月牙①繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到月牙②,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系中,一顆棋子從點(diǎn)P處開始依次關(guān)于點(diǎn)A,B,C作循環(huán)對(duì)稱跳動(dòng),即第一次從點(diǎn)P跳到關(guān)于點(diǎn)A的對(duì)稱點(diǎn)M處,第二次從點(diǎn)M跳到關(guān)于點(diǎn)B的對(duì)稱點(diǎn)N處,第三次從點(diǎn)N跳到關(guān)于點(diǎn)C的對(duì)稱點(diǎn)處,…如此下去.
          (1)在圖中標(biāo)出點(diǎn)M,N的位置,并分別寫出點(diǎn)M,N的坐標(biāo):
           

          (2)請你依次連接M、N和第三次跳后的點(diǎn),組成一個(gè)封閉的圖形,并計(jì)算這個(gè)圖形的面積;
          (3)猜想一下,經(jīng)過第2009次跳動(dòng)之后,棋子將落到什么位置.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)系xoy中,有一組對(duì)角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對(duì)角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點(diǎn)重合),依上述排列方式,對(duì)角線長為n的第n個(gè)正方形的頂點(diǎn)An的坐標(biāo)為
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3(a≠0)經(jīng)過A(-1,0)、B(3,0)兩點(diǎn),拋物線與y軸交點(diǎn)為C,其頂點(diǎn)為D,連接BD,點(diǎn)P是線段BD上一個(gè)動(dòng)點(diǎn)(不與B、D重合),過點(diǎn)P作y軸的垂線,垂足為E,連接精英家教網(wǎng)BE.
          (1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
          (2)如果P點(diǎn)的坐標(biāo)為(x,y),△PBE的面積為s,求s與x的函數(shù)關(guān)系式,寫出自變量x的取值范圍,并求出s的最大值;
          (3)在(2)的條件下,當(dāng)s取得最大值時(shí),過點(diǎn)P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P',請直接寫出P'點(diǎn)坐標(biāo),并判斷點(diǎn)P'是否在該拋物線上.

          查看答案和解析>>

          同步練習(xí)冊答案