日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn)(不與A、B重合),D為的中點(diǎn),過點(diǎn)D作弦DEABF,PBA延長線上一點(diǎn),且∠PEA=∠B

          1)求證:PE是⊙O的切線;

          2)連接CADE相交于點(diǎn)G,CA的延長線交PEH,求證:HEHG

          3)若tanP,試求的值.

          【答案】1)證明見解析;(2)證明見解析;(3

          【解析】

          1)連接OE,由圓周角定理證得∠EAB+B90°,可得出∠OAE=∠AEO,則∠PEA+AEO90°,即∠PEO90°,則結(jié)論得證;

          2)連接OD,證得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF2B,∠AOD2B,可證得∠PEF=∠AOD=∠AGF,則結(jié)論得證;

          3)可得出tanPtanODF,設(shè)OF5x,則DF12x,求出AE,BE,得出,證明PEA∽△PBE,得出,過點(diǎn)HHKPA于點(diǎn)K,證明∠P=∠PAH,得出PHAH,設(shè)HK5aPK12a,得出PH13a,可得出AH13a,AG10a,則可得出答案.

          解:(1)證明:如圖1,連接OE,

          AB是⊙O的直徑,

          ∴∠AEB90°,

          ∴∠EAB+B90°

          OAOE,

          ∴∠OAE=∠AEO,

          ∴∠B+AEO90°

          ∵∠PEA=∠B,

          ∴∠PEA+AEO90°,

          ∴∠PEO90°

          又∵OE為半徑,

          PE是⊙O的切線;

          2)如圖2,連接OD

          D的中點(diǎn),

          ODAC,設(shè)垂足為M,

          ∴∠AMO90°

          DEAB,

          ∴∠AFD90°,

          ∴∠AOD+OAM=∠OAM+AGF90°,

          ∴∠AOD=∠AGF,

          ∵∠AEB=∠EFB90°,

          ∴∠B=∠AEF,

          ∵∠PEA=∠B,

          ∴∠PEF2B

          DEAB,

          ,

          ∴∠AOD2B

          ∴∠PEF=∠AOD=∠AGF,

          HEHG

          3)解:如圖3,

          ∵∠PEF=∠AOD,∠PFE=∠DFO,

          ∴∠P=∠ODF

          tanPtanODF,

          設(shè)OF5x,則DF12x,

          OD13x

          BFOF+OB5x+13x18x,AFOAOF13x5x8x

          DEOA,

          EFDF12x

          AE4x,BE6x

          ∵∠PEA=∠B,∠EPA=∠BPE

          ∴△PEA∽△PBE,

          ∵∠P+PEF=∠FAG+AGF90°,

          ∴∠HEG=∠HGE,

          ∴∠P=∠FAG,

          又∵∠FAG=∠PAH

          ∴∠P=∠PAH,

          PHAH,

          過點(diǎn)HHKPA于點(diǎn)K

          PKAK,

          tanP,

          設(shè)HK5aPK12a,

          PH13a,

          AH13a,PE36a

          HEHG36a13a23a,

          AGGHAH23a13a10a,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1是實(shí)驗(yàn)室中的一種擺動(dòng)裝置,在地面上,支架是底邊為的等腰直角三角形,擺動(dòng)臂長可繞點(diǎn)旋轉(zhuǎn),擺動(dòng)臂可繞點(diǎn)旋轉(zhuǎn),.

          1)在旋轉(zhuǎn)過程中:

          ①當(dāng)三點(diǎn)在同一直線上時(shí),求的長;

          ②當(dāng)三點(diǎn)在同一直角三角形的頂點(diǎn)時(shí),求的長.

          2)若擺動(dòng)臂順時(shí)針旋轉(zhuǎn),點(diǎn)的位置由外的點(diǎn)轉(zhuǎn)到其內(nèi)的點(diǎn)處,連結(jié),如圖2,此時(shí),求的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知AB是⊙O的弦,點(diǎn)C是弧AB的中點(diǎn),D是弦AB上一動(dòng)點(diǎn),且不與A、B重合,CD的延長線交于⊙O點(diǎn)E,連接AE、BE,過點(diǎn)AAFBC,垂足為F,∠ABC30°

          1)求證:AF是⊙O的切線;

          2)若BC6,CD3,則DE的長為   ;

          3)當(dāng)點(diǎn)D在弦AB上運(yùn)動(dòng)時(shí),的值是否發(fā)生變化?如果變化,請(qǐng)寫出其變化范圍;如果不變,請(qǐng)求出其值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,ACAB,點(diǎn)EBC上,以BE為直徑的O經(jīng)過點(diǎn)A,點(diǎn)D是直徑BE下方半圓的中點(diǎn),ADBC于點(diǎn)F,且∠B2D

          1)求∠B的度數(shù);

          2)求證:ACO的切線;

          3)連接DE,若OD3,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是一張矩形紙片ABCD,已知AB8,AD6,EAB上一點(diǎn),AE5,現(xiàn)要剪下一張等腰三角形紙片(AEP),使點(diǎn)P落在矩形ABCD的某一條邊上,則等腰三角形AEP的底邊上的高的長是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與軸交于點(diǎn)

          1)求一次函數(shù)的解析式和點(diǎn)的坐標(biāo);

          2)在反比例函數(shù)的圖象上取一點(diǎn),直線軸于點(diǎn),若點(diǎn)恰為線段的中點(diǎn),求點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAA1的直角邊OAx軸上,點(diǎn)A1在第一象限,且OA=1,以點(diǎn)A1為直角頂點(diǎn),OA1為一直角邊作等腰直角三角形OA1A2,再以點(diǎn)A2為直角頂點(diǎn),OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點(diǎn)A2020的坐標(biāo)是_________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了增強(qiáng)學(xué)生的安全意識(shí),某校組織了次安全如識(shí)測(cè)試,閱卷后,校團(tuán)委隨機(jī)抽取了部分學(xué)生的考卷進(jìn)行了分析統(tǒng)計(jì),發(fā)現(xiàn)測(cè)試成績(分)的最低分為60分.最高分為滿分100分.并繪制了如下不完整的統(tǒng)計(jì)圖表:

          根據(jù)以上信息,解答下列問題:

          1)補(bǔ)全上面的統(tǒng)計(jì)圖表;

          2)所抽取學(xué)生的測(cè)試成績的中位數(shù)落在__________分?jǐn)?shù)段內(nèi);

          3)已知該校共有2000名學(xué)生參加本次安全知識(shí)測(cè)試,請(qǐng)估計(jì)該校有多少名學(xué)生的測(cè)試成績不低于80分.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是( )

          A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式

          B.某種彩票中獎(jiǎng)的概率是,買1000張這種彩票一定會(huì)中獎(jiǎng)

          C.2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生

          D.從只裝有白球和綠球的袋中任意摸出一個(gè)球,摸出黑球是確定事件

          查看答案和解析>>

          同步練習(xí)冊(cè)答案