日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知拋物線y=﹣x2+m1x+m的對稱軸為x,請你解答下列問題:

          1m   ,拋物線與x軸的交點(diǎn)為   

          2x取什么值時,y的值隨x的增大而減。

          3x取什么值時,y0?

          【答案】12(﹣1,0),(2,0);(2x;(3x<﹣1x2

          【解析】

          1)利用拋物線的對稱軸方程得到=,解方程得到m的值,從而得到yx2x2,然后解方程x2x20得拋物線與x軸的交點(diǎn);(2)根據(jù)二次函數(shù)的性質(zhì)求解;(3)結(jié)合函數(shù)圖象,寫出拋物線在x軸下方所對應(yīng)的自變量的范圍即可.

          解:(1)拋物線的對稱軸為直線x=,

          m2,

          拋物線解析式為y=﹣x2+x+2,

          當(dāng)y0時,﹣x2+x+20,解得x1=﹣1,x22

          ∴拋物線與x軸的交點(diǎn)為(﹣1,0),(2,0);

          2)由函數(shù)圖象可知,

          當(dāng)x時,y的值隨x的增大而減小;

          3)由函數(shù)圖象可知,

          當(dāng)x<﹣1x2時,y0

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC的紙片中,∠C90°,AC5,AB13.點(diǎn)D在邊BC上,以AD為折痕將△ADB折疊得到△ADB′,AB′與邊BC交于點(diǎn)E.若△DEB′為直角三角形,則BD的長是___

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,,AD平分∠BAC,交BC于點(diǎn)D,點(diǎn)OAB上,⊙O經(jīng)過AD兩點(diǎn),交AC于點(diǎn)E,交AB于點(diǎn)F

          1)求證:BC是⊙O的切線;

          2)若⊙O的半徑是2cm,E是弧AD的中點(diǎn),求陰影部分的面積(結(jié)果保留π和根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,邊長為1的菱形ABCD中,∠DAB60°,連接AC,以AC為邊在AC上方作第二個菱形ACEF,使∠FAC60°.連接AE,再以AE為邊在AE上方作第三個菱形AEGH,使∠HAE60°.則菱形AEGH的周長為(  )

          A.B.12C.3D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,正方形ABCD的邊長為6,點(diǎn)E,點(diǎn)F分別在邊AB,AD上,AEDF2,連接DECF交于點(diǎn)G.連接ACDE交于點(diǎn)M,延長CB至點(diǎn)K,使BK3,連接GKAB于點(diǎn)N

          (1)求證:CFDE;

          (2)求△AMD的面積;

          (3)請直接寫出線段GN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+c與兩坐標(biāo)軸分別交于點(diǎn)A、B、C,直線y=﹣x+4經(jīng)過點(diǎn)B,與y軸交點(diǎn)為DM3,﹣4)是拋物線的頂點(diǎn).

          1)求拋物線的解析式.

          2)已知點(diǎn)N在對稱軸上,且AN+DN的值最。簏c(diǎn)N的坐標(biāo).

          3)在(2)的條件下,若點(diǎn)E與點(diǎn)C關(guān)于對稱軸對稱,請你畫出△EMN并求它的面積.

          4)在(2)的條件下,在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以A、B、NP為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,P'是邊AB上一點(diǎn),四邊形P'Q'M'N'是正方形,點(diǎn)Q',在邊BC上,點(diǎn)N'在△ABC內(nèi).連接BN',并延長交AC于點(diǎn)N,NMBC于點(diǎn)M,NPMNAB于點(diǎn)PPQBC于點(diǎn)Q

          1)求證:四邊形PQMN為正方形;

          2)若∠A=90°,AC=1.5m,△ABC的面積=1.5m2.求PN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2020年新冠肺炎疫情期間,我市某企業(yè)為支援湖北,準(zhǔn)備將購買的70噸蔬菜運(yùn)往武漢,現(xiàn)有甲、乙兩種貨車可以租用,已知2輛甲貨車和3輛乙貨車一次可運(yùn)44噸蔬菜;3輛甲貨車和1輛乙貨車一次可運(yùn)38噸蔬菜.

          1)求每輛甲種貨車和每輛乙種貨車一次分別能運(yùn)多少噸蔬菜?

          2)已知甲種貨車每輛租金500元,乙種貨車每輛租金450元,該企業(yè)共租用甲、乙兩種貨車8輛,設(shè)租甲種貨車a輛,求租車總費(fèi)用w(元)與a之間的函數(shù)關(guān)系式,并求出自變量a的取值范圍;

          3)在(2)的條件下,請你為該企業(yè)設(shè)計出費(fèi)用最少的方案,并求出最少的租車費(fèi)用.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,0),以OA1為直角邊作RtOA1A2,并使∠A1OA2=60°,再以OA2為直角邊作RtOA2A3,并使∠A2OA3=60°,再以OA3為直角邊作RtOA3A4,并使∠A3OA4=60°…按此規(guī)律進(jìn)行下去,則點(diǎn)A2020的坐標(biāo)為____

          查看答案和解析>>

          同步練習(xí)冊答案