【題目】如圖,Rt△AOB繞著一點(diǎn)旋轉(zhuǎn)到△A′OB′的位置,可以看到點(diǎn)A旋轉(zhuǎn)到點(diǎn)A′,OA旋轉(zhuǎn)到OA′,∠AOB旋轉(zhuǎn)到∠A′OB′,這些都是互相對應(yīng)的點(diǎn)、線段和角.已知∠AOB=30°,∠AOB′=10°,那么點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)______;線段OB的對應(yīng)線段是線段_____;∠A的對應(yīng)角是______;旋轉(zhuǎn)中心是點(diǎn)_______;旋轉(zhuǎn)的角度是______度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,
.點(diǎn)
是射線
上一動點(diǎn)(與點(diǎn)
不重合),
、
分別平分
和
、分別交射線
于點(diǎn)
,
.
(1)①的度數(shù)是________;
②,
________;
(2)求的度數(shù);
(3)當(dāng)點(diǎn)運(yùn)動時,
與
之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)?/span>“友好拋物線”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點(diǎn)B落在點(diǎn)E處,EC交AD于F.
(1)求證:△AEF≌△CDF;
(2)若AB=4,BC=8,EF=3,求圖中陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的邊長為2,∠B=60°,點(diǎn)P、Q分別是邊BC、CD上的動點(diǎn)(不與端點(diǎn)重合),且BP=CQ.
(1)圖中除了△ABC與△ADC外,還有哪些三角形全等,請寫出來;
(2)點(diǎn)P、Q在運(yùn)動過程中,四邊形APCQ的面積是否變化,如果變化,請說明理由;如果不變,請求出面積;
(3)當(dāng)點(diǎn)P在什么位置時,△PCQ的面積最大,并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
①寫出A、B、C的坐標(biāo).
②以原點(diǎn)O為對稱中心,畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形為長方形,其中點(diǎn)
的坐標(biāo)分別為
、
,且
軸,交
軸于點(diǎn)
,
交
軸于點(diǎn)
.
(1)求兩點(diǎn)坐標(biāo);
(2)一動點(diǎn)從
出發(fā),以2個單位/秒的速度沿
向
點(diǎn)運(yùn)動(不與
點(diǎn)重合),在
點(diǎn)運(yùn)動過程中,連接
,
①試探究之間的數(shù)量關(guān)系;并說明理由;
②是否存在某一時刻,使三角形
的面積等于長方形
面積的
?若存在,求
的值并求此時點(diǎn)
的坐標(biāo);若不存在,請說明理由;
③三角形的面積記作
;三角形
的面積記作
;三角形
的面積記作
;直接寫出
、
、
的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把一條拋物線先向上平移3個單位長度,然后繞原點(diǎn)旋轉(zhuǎn)180°得到拋物線y=x2+5x+6,則原拋物線的解析式是( )
A. y=﹣(x﹣)2﹣
B. y=﹣(x+
)2﹣
C. y=﹣(x﹣)2﹣
D. y=﹣(x+
)2+
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com