日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC中,∠ABC、ACB的平分線相交于O,MN過點(diǎn)O且與BC平行.△ABC的周長(zhǎng)為20,AMN的周長(zhǎng)為12,則BC的長(zhǎng)為( )

          A. 10 B. 16 C. 8 D. 4

          【答案】C

          【解析】

          BO為角平分線,得到一對(duì)角相等,再由MN平行于BC,利用兩直線平行內(nèi)錯(cuò)角相等,得到一對(duì)角相等,等量代換可得出∠MBO=MOB,利用等角對(duì)等邊得到MO=MB,同理得到NO=NC,而三角形ABC的周長(zhǎng)等于三邊相加,即AB+BC+AC,其中AB=AM+MB,AC=AN+NC,等量代換后可得出三角形ABC的周長(zhǎng)等于三角形AMN的周長(zhǎng)與BC的和,即BC等于兩三角形的周長(zhǎng)之差,將兩三角形的周長(zhǎng)代入,即可求出BC的長(zhǎng).

          解:∵OB平分∠MBC,

          ∴∠MBO=OBC,

          MNBC,

          ∴∠MOB=OBC,

          ∴∠MOB=MBO,

          MB=MO,同理可得∠NOC=NCO,

          NO=NC,

          (AB+AC+BC)-(AM+AN+MN)

          =(AM+MB+AN+NC+BC)-(AM+AN+MN)

          =(AM+MO+AN+NO+BC)-(AM+AN+MN)

          =(AM+AN+MN+BC)-(AM+AN+MN)

          =BC,

          又∵△ABC的周長(zhǎng)為20,AMN的周長(zhǎng)為12,即AB+AC+BC=20,AM+AN+MN=12,

          BC=20-12=8.

          故選:C.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),∠AOE130°,∠EOF90°OP平分∠AOE,OQ平分∠BOF,求∠POQ的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某手機(jī)專營(yíng)店代理銷售A、B兩種型號(hào)手機(jī).手機(jī)的進(jìn)價(jià)、售價(jià)如下表:

          型號(hào)

          A

          B

          進(jìn)價(jià)

          1800/

          1500/

          售價(jià)

          2070/

          1800/

          1)第一個(gè)月:用54000元購(gòu)進(jìn)A、B兩種型號(hào)的手機(jī),全部售完后獲利9450元,求第一個(gè)月購(gòu)進(jìn)A、B兩種型號(hào)手機(jī)的數(shù)量;

          2)第二個(gè)月:計(jì)劃購(gòu)進(jìn)AB兩種型號(hào)手機(jī)共34部,且不超出第一個(gè)月購(gòu)進(jìn)AB兩種型號(hào)的手機(jī)總費(fèi)用,則A型號(hào)手機(jī)最多能購(gòu)多少部?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ADBC,EFBC,垂足分別為D、F,∠2+3180°,試說明:∠GDC=∠B.請(qǐng)補(bǔ)充說明過程,并在括號(hào)內(nèi)填上相應(yīng)的理由.

          解:∵ADBCEFBC(已知)

          ∴∠ADB=∠EFB90°   ,

          EFAD   ),

             +2180°   ).

          又∵∠2+3180°(已知),

          ∴∠1=∠3   ),

          AB      ),

          ∴∠GDC=∠B   ).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,點(diǎn)PQ分別是邊長(zhǎng)為4cm的等邊ABCAB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cms。

          ⑴連接AQCP交于點(diǎn)M,在點(diǎn)P、Q運(yùn)動(dòng)的過程中,∠CMQ的大小變化嗎?若變化,則說明理由,若不變,請(qǐng)直接寫出它的度數(shù);

          ⑵點(diǎn)P、Q在運(yùn)動(dòng)過程中,設(shè)運(yùn)動(dòng)時(shí)間為t,當(dāng)t為何值時(shí),PBQ為直角三角形?

          ⑶如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ的大小變化嗎?則說明理由;若不變,請(qǐng)求出它的度數(shù)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4ADBC邊上的中線,FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2,當(dāng)EFCF取得最小值時(shí)∠ECF的度數(shù)為( )

          A. 20° B. 25° C. 30° D. 45°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)DBC的中點(diǎn),DE垂直平分AC,垂足為E,F(xiàn)BA的中點(diǎn).求證:DFAB的垂直平分線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個(gè)菱形相鄰的兩個(gè)頂點(diǎn),且該菱形的兩條對(duì)角線分別與x軸,y軸平行,則稱該菱形為點(diǎn)P,Q的“相關(guān)菱形”.圖1為點(diǎn)P,Q的“相關(guān)菱形”的一個(gè)示意圖.
          已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(b,0),
          (1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點(diǎn)A,B的“相關(guān)菱形”頂點(diǎn)的是;
          (2)若點(diǎn)A,B的“相關(guān)菱形”為正方形,求b的值;
          (3)⊙B的半徑為 ,點(diǎn)C的坐標(biāo)為(2,4).若⊙B上存在點(diǎn)M,在線段AC上存在點(diǎn)N,使點(diǎn)M,N的“相關(guān)菱形”為正方形,請(qǐng)直接寫出b的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在邊長(zhǎng)為5的正方形ABCD中,點(diǎn)E,F(xiàn)分別是BC,DC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C,D重合),且AE⊥EF.

          (1)如圖1,當(dāng)BE=2時(shí),求FC的長(zhǎng);
          (2)延長(zhǎng)EF交正方形ABCD外角平分線CP于點(diǎn)P.
          ①依題意將圖2補(bǔ)全;
          ②小京通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)E運(yùn)動(dòng)的過程中,始終有AE=PE.小京把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的三種想法:
          想法1:在AB上截取AG=EC,連接EG,要證AE=PE,需證△AGE≌△ECP.
          想法2:作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)H,連接BH,CH,EH.要證AE=PE,需證△EHP為等腰三角形.
          想法3:將線段BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,得到線段BM,連接CM,EM,要證AE=PE,需證四邊形MCPE為平行四邊形.
          請(qǐng)你參考上面的想法,幫助小京證明AE=PE.(一種方法即可)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案