日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 甲、乙兩人在同樣的條件下練習(xí)射擊,每人打5發(fā)子彈,命中環(huán)數(shù)如下:甲:6,8,9,9,8;乙:10,7,7,7,9. 則兩人射擊成績穩(wěn)定程度關(guān)系是
          甲比乙穩(wěn)定
          甲比乙穩(wěn)定
          分析:根據(jù)題意,分別計算甲乙兩個人的方差可得,甲的方差小于乙的方差;結(jié)合方差的意義,可得甲比乙穩(wěn)定.
          解答:解:甲的平均數(shù)=(6+8+9+9+8)÷5=8;
          乙的平均數(shù)=(10+7+7+7+9)÷5=8;
          S2=
          1
          5
          [(6-8)2+(8-8)2+(9-8)2+(9-8)2+(8-8)2]=1.2,
          S2=
          1
          5
          [(10-8)2+(7-8)2+(7-8)2+(7-8)2+(9-8)2]=1.6,
          ∵S2<S2
          ∴甲比乙穩(wěn)定.
          故答案為:甲比乙穩(wěn)定.
          點評:本題考查方差的定義與意義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為
          .
          x
          ,則方差S2=
          1
          n
          [(x1-
          .
          x
          2+(x2-
          .
          x
          2+…+(xn-
          .
          x
          2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          我國著名數(shù)學(xué)家蘇步青在訪問德國時,德國一位數(shù)學(xué)家給他出了這樣一道題目:
          甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當(dāng)甲、乙兩人相遇時,這條狗一共跑了多少千米?
          蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
          這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
          蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對于某些數(shù)學(xué)問題,靈活運用整體思想,常可化難為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應(yīng)用.
          比如解方程組
          x+2(x+2y)=4
          x+2y=1

          解:把②代入①得x+2×1=4,所以x=2
          把x=2代入②得2+2y=1,解之,得y=-
          1
          2

          所以方程組的解為
          x=2
          y=-
          1
          2

          同學(xué)們,你會用同樣的方法解下面兩個方程嗎?試試看!
          (1)
          2x-3y-2=0
          2x-3y+5
          7
          +2y=9
          (2)
          x-3y
          3
          -
          1
          3
          =1
          2x-
          x-3y
          x
          =5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          我國著名數(shù)學(xué)家蘇步青在訪問德國時,德國一位數(shù)學(xué)家給他出了這樣一道題目:
          甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當(dāng)甲、乙兩人相遇時,這條狗一共跑了多少千米?
          蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
          這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
          蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對于某些數(shù)學(xué)問題,靈活運用整體思想,?苫y為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應(yīng)用.
          比如解方程組數(shù)學(xué)公式
          解:把②代入①得x+2×1=4,所以x=2
          把x=2代入②得2+2y=1,解之,得y=-數(shù)學(xué)公式
          所以方程組的解為數(shù)學(xué)公式
          同學(xué)們,你會用同樣的方法解下面兩個方程嗎?試試看!
          (1)數(shù)學(xué)公式(2)數(shù)學(xué)公式

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          我國著名數(shù)學(xué)家蘇步青在訪問德國時,德國一位數(shù)學(xué)家給他出了這樣一道題目:
          甲、乙二人相對而行,他們相距10千米,甲每小時走3千米,乙每小時走2千米,甲帶著一條狗,狗每小時跑5千米,狗跑得快,它同甲一起出發(fā),碰到乙的時候向甲跑去,碰到甲的時候又向乙跑去,問當(dāng)甲、乙兩人相遇時,這條狗一共跑了多少千米?
          蘇步青教授很快就解出了這道題目.同學(xué)們,你知道他是怎么解的嗎?
          這道題最讓人迷惑不解的是甲身邊的那條狗.如果我們先計算狗從甲的身邊跑到乙的身邊的路程s,再計算狗從乙的身邊跑到甲的身邊的路程s,…,顯然把狗跑的路程相加,這樣很繁瑣,笨拙且不易計算.蘇教授從整體著眼,根據(jù)甲、乙出發(fā)到相遇經(jīng)歷的時間與狗所走的時間相等,即10÷(3+2)=2(小時),這樣就不難求出狗一共跑的路程是:5×2=10(千米).
          蘇步青教授在解題時,把注意力和著眼點放在問題的整體結(jié)構(gòu)上,從而能觸及問題的實質(zhì):狗從出發(fā)到甲、乙兩相遇所用的時間,恰好是甲、乙二人相遇所用的時間,從而使問題得到巧妙地解決.蘇教授這種解決問題的思想方法實際上就是數(shù)學(xué)中的整體思想的應(yīng)用.對于某些數(shù)學(xué)問題,靈活運用整體思想,?苫y為易,捷足先登.在解二元一次方程組時,也要注意這種思想方法的應(yīng)用.
          比如解方程組
          x+2(x+2y)=4
          x+2y=1

          把②代入①得x+2×1=4,所以x=2
          把x=2代入②得2+2y=1,解之,得y=-
          1
          2

          所以方程組的解為
          x=2
          y=-
          1
          2

          同學(xué)們,你會用同樣的方法解下面兩個方程嗎?試試看!
          (1)
          2x-3y-2=0
          2x-3y+5
          7
          +2y=9
          (2)
          x-3y
          3
          -
          1
          3
          =1
          2x-
          x-3y
          x
          =5

          查看答案和解析>>

          同步練習(xí)冊答案