日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21、如圖,已知D是等腰三角形ABC底邊BC上的一點,它到兩腰AB、AC的距離分別為DE、DF,請指出當D在什么位置時,DE=DF,并加以證明.
          分析:要判斷符合條件的點的位置,可以先猜測是BC的中點,然后根據(jù)三線合一的性質或三角形全等來證明DE=DF.
          解答:解:當點D在BC的中點時,DE=DF.
          證明如下:
          當BD=BC時,
          ∵∠B=∠C,∠DEB=∠CFD=90°
          ∴△DBE≌△DCF(AAS)
          ∴DE=DF.
          點評:主要考查了等腰三角形的性質及全等三角形的判定與性質;利用三角形全等是證明線段相等的常用方法之一,要熟練掌握.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2011年廣東省湛江市中考數(shù)學模擬試卷(五)(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年廣東省湛江市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年江蘇省鹽城市鹽城中學初三年級中考模擬數(shù)學試卷1(解析版) 題型:解答題

          如圖,已知△ABC是等腰直角三角形,∠C=90度.
          (1)操作并觀察,如圖,將三角板的45°角的頂點與點C重合,使這個角落在∠ACB的內部,兩邊分別與斜邊AB交于E、F兩點,然后將這個角繞著點C在∠ACB的內部旋轉,觀察在點E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結果.
          (2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

          查看答案和解析>>

          同步練習冊答案