日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知二次函數(shù)的部分圖象如圖所示,則關(guān)于的一元二次方程的解為

          【答案】x1=-1或x2=3

          【解析】

          試題分析:由二次函數(shù)y=-x2+2x+m的部分圖象可以得到拋物線的對稱軸和拋物線與x軸的一個交點坐標(biāo),然后可以求出另一個交點坐標(biāo),再利用拋物線與x軸交點的橫坐標(biāo)與相應(yīng)的一元二次方程的根的關(guān)系即可得到關(guān)于x的一元二次方程-x2+2x+m=0的解

          試題解析:依題意得二次函數(shù)y=-x2+2x+m的對稱軸為x=1,與x軸的一個交點為(3,0),

          拋物線與x軸的另一個交點橫坐標(biāo)為1-(3-1)=-1,

          交點坐標(biāo)為(-1,0)

          當(dāng)x=-1或x=3時,函數(shù)值y=0,

          即-x2+2x+m=0,

          關(guān)于x的一元二次方程-x2+2x+m=0的解為x1=-1或x2=3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們規(guī)定,若關(guān)于 x 的一元一次方程 ax=b 的解為 x=ba,則稱該方程的為差解方程,例如:3x=的解為x= =-3,則該方程3x=就是差解方程.

          請根據(jù)以上規(guī)定解答下列問題

          (1)若關(guān)于 x 的一元一次方程-5x=m+1 是差解方程,則 m=_____.

          (2)若關(guān)于 x 的一元一次方程 2x=ab+3a+1 是差解方程,且它的解為 x=a,求代數(shù)式(ab+22019的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下圖是由大小相同的小立方體搭乘的幾何體:

          1)請在所給的方格中畫出該幾何體從上面看和從左面看的兩個圖形;

          2)現(xiàn)在你的手里還有一些相同的小立方塊,如果保持從上面來看和從左面看所得到的圖形不變,則在左邊的立體圖形中最多可以添加 個小立方塊.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)已知∠ABC=90°,∠CBD=30°,BP平分∠ABD,請補全圖形,并求∠ABP的度數(shù).

          2)在(1)的條件下,若∠ABC=α,∠CBD=β,直接寫出∠ABP的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖7所示,點、軸上,且,分別過點、、軸的平行線,與反比例函數(shù)的圖象分別交于點、,分別過點 軸的平行線,分別與軸交于點 ,連接 ,那么圖中陰影部分的面積之和為___________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料,并回答問題:

          材料:數(shù)學(xué)課上,老師給出了如下問題.

          如圖1,點A、B、C均在直線l上,AB = 8,BC = 2,MAC的中點,求AM的長.

          小明的解答過程如下:

          解:如圖2,

          AB = 8BC = 2,

          AC = ABBC = 82 = 6

          MAC的中點,

          ).

          小芳說:“小明的解答不完整”.

          問題:(1)小明解答過程中的“①”為 ;

          2 你同意小芳的說法嗎?如果同意,請將小明的解答過程補充完整;如果不同意,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A﹣3,0和點B,交y軸于點C0,3).

          1求拋物線的函數(shù)表達式;

          2若點P在拋物線上,且SAOP=4SBOC,求點P的坐標(biāo);

          3如圖b,設(shè)點Q是線段AC上的一動點,作DQx軸,交拋物線于點D,求線段DQ長度的最大值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作Rt△ABA1,以BA1為直角邊作第二個Rt△BA1B1,以A1B1為直角邊作第三個Rt△A1B1A2,,依此規(guī)律,得到Rt△B2017A2018B2018,則點B2018的縱坐標(biāo)為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線過點, 為線段OA上一個動點(點M與點A不重合),過點M作垂直于x軸的直線與直線AB和拋物線分別交于點P、N

          (1)求直線AB的解析式和拋物線的解析式;

          (2)如果點PMN的中點,那么求此時點N的坐標(biāo);

          (3)如果以B,PN為頂點的三角形與相似,求點M的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案