日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•綦江縣)已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.
          (1)求該拋物線的解析式;
          (2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
          (3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在,請說明理由.

          【答案】分析:(1)由題意拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2,根據(jù)待定系數(shù)法可以求得該拋物線的解析式;
          (2)假設(shè)存在,設(shè)出時間t,則根據(jù)線段PQ被直線CD垂直平分,再由垂直平分線的性質(zhì)及勾股定理來求解t,看t是否存在;
          (3)假設(shè)直線x=1上是存在點M,使△MPQ為等腰三角形,此時要分兩種情況討論:①當(dāng)PQ為等腰△MPQ的腰時,且P為頂點;②當(dāng)PQ為等腰△MPQ的腰時,且Q為頂點;然后再根據(jù)等腰三角形的性質(zhì)及直角三角形的勾股定理求出M點坐標(biāo).
          解答:解:(1)方法一:∵拋物線過C(0,-6)
          ∴c=-6,即y=ax2+bx-6

          解得:a=,b=-
          ∴該拋物線的解析式為y=(3分)
          方法二:∵A、B關(guān)于x=2對稱
          ∴A(-8,0)
          設(shè)y=a(x+8)(x-12)
          C在拋物線上
          ∴-6=a×8×(-12)
          即a=
          ∴該拋物線的解析式為:y=;(3分)

          (2)存在,設(shè)直線CD垂直平分PQ,
          在Rt△AOC中,AC==10=AD,
          ∴點D在對稱軸上,連接DQ,顯然∠PDC=∠QDC (1分)
          由已知∠PDC=∠ACD,
          ∴∠QDC=∠ACD,
          ∴DQ∥AC (1分)
          ∴DB=AB-AD=20-10=10,
          ∴DQ為△ABC的中位線,
          ∴DQ=AC=5,(1分)
          ∴AP=AD-PD=AD-DQ=10-5=5,
          ∴t=5÷1=5(秒),
          ∴存在t=5(秒)時,線段PQ被直線CD垂直平分(1分)
          在Rt△BOC中,BC=,
          而DQ為△ABC的中位線,
          ∴CQ=3,
          ∴點Q的運動速度為每秒單位長度;(1分)

          (3)存在,過點Q作QH⊥x軸于H,則QH=3,PH=9
          在Rt△PQH中,PQ=(1分)
          ①當(dāng)MP=MQ,即M為頂點,
          設(shè)直線CD的直線方程為:y=kx+b(k≠0),
          則:
          解得:
          ∴y=3x-6
          當(dāng)x=1時,y=-3,
          ∴M1(1,-3)(1分)
          ②當(dāng)PQ為等腰△MPQ的腰時,且P為頂點.
          設(shè)直線x=1上存在點M(1,y),
          則OP=3,點M的橫坐標(biāo)為1,縱坐標(biāo)為y,根據(jù)勾股定理得PM22=42+y2,
          又PQ2=90,
          則42+y2=90,

          ∴M2(1,),(1分)
          ③當(dāng)PQ為等腰△MPQ的腰時,且Q為頂點,
          過點Q作QE⊥y軸于E,交直線x=1于F,則F(1,-3)
          設(shè)直線x=1存在點M(1,y),由勾股定理得:
          (y+3)2+52=90即y=-3
          (1分)
          綜上所述:存在這樣的五點:
          M1(1,-3),M2(1,),
          點評:此題是一道綜合題,難度較大,主要考查二次函數(shù)的性質(zhì),用待定系數(shù)法求函數(shù)的解析式,還考查等腰三角形的性質(zhì)及勾股定理,同時還讓學(xué)生探究存在性問題,對待問題要思考全面,學(xué)會分類討論的思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

          (2010•綦江縣)已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.
          (1)求該拋物線的解析式;
          (2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
          (3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

          (2010•綦江縣)一次函數(shù)y=-3x-2的圖象不經(jīng)過( )
          A.第一象限
          B.第二象限
          C.第三象限
          D.第四象限

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年重慶市綦江縣中考數(shù)學(xué)試卷(解析版) 題型:選擇題

          (2010•綦江縣)一次函數(shù)y=-3x-2的圖象不經(jīng)過( )
          A.第一象限
          B.第二象限
          C.第三象限
          D.第四象限

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《有理數(shù)》(02)(解析版) 題型:選擇題

          (2010•綦江縣)4的倒數(shù)是( )
          A.±2
          B.2
          C.
          D.-4

          查看答案和解析>>

          同步練習(xí)冊答案