日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.

          (1)求△ABC的面積;
          (2)設(shè)AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
          (3)已知圖形L的頂點均在⊙O上,當(dāng)圖形L的面積最大時,求⊙O的面積.

          【答案】
          (1)

          解:如圖3,作AH⊥BC于H,

          ∴∠AHB=90°.

          ∵△ABC是等邊三角形,

          ∴AB=BC=AC=3.

          ∵∠AHB=90°,

          ∴BH= BC=

          在Rt△ABC中,由勾股定理,得

          AH=

          ∴SABC= =


          (2)

          解:如圖1,當(dāng)0<x≤1.5時,y=SADE

          作AG⊥DE于G,

          ∴∠AGD=90°,∠DAG=30°,

          ∴DG= x,AG= x,

          ∴y= = x2,

          ∵a= >0,開口向上,在對稱軸的右側(cè)y隨x的增大而增大,

          ∴x=1.5時,y最大= ,

          如圖2,當(dāng)1.5<x<3時,作MG⊥DE于G,

          ∵AD=x,

          ∴BD=DM=3﹣x,

          ∴DG= (3﹣x),MF=MN=2x﹣3,

          ∴MG= (3﹣x),

          ∴y= ,

          =﹣

          綜上所述,y關(guān)于x的函數(shù)解析式為:


          (3)

          解:如圖4,∵y=﹣ ;

          ∴y=﹣ (x2﹣4x)﹣ ,

          y=﹣ (x﹣2)2+ ,

          ∵a=﹣ <0,開口向下,

          ∴x=2時,y最大= ,

          ,

          ∴y最大時,x=2,

          ∴DE=2,BD=DM=1.作FO⊥DE于O,連接MO,ME.

          ∴DO=OE=1,

          ∴DM=DO.

          ∵∠MDO=60°,

          ∴△MDO是等邊三角形,

          ∴∠DMO=∠DOM=60°,MO=DO=1.

          ∴MO=OE,∠MOE=120°,

          ∴∠OME=30°,

          ∴∠DME=90°,

          ∴DE是直徑,

          SO=π×12=π.


          【解析】(1)作AH⊥BC于H,根據(jù)勾股定理就可以求出AH,由三角形的面積公式就可以求出其值;(2)如圖1,當(dāng)0<x≤1.5時,由三角形的面積公式就可以表示出y與x之間的函數(shù)關(guān)系式,如圖2,當(dāng)1.5<x<3時,重疊部分的面積為梯形DMNE的面積,由梯形的面積公式就可以求出其關(guān)系式;(3)如圖4,根據(jù)(2)的結(jié)論可以求出y的最大值從而求出x的值,作FO⊥DE于O,連接MO,ME,求得∠DME=90°,就可以求出⊙O的直徑,由圓的面積公式就可以求出其值.
          【考點精析】本題主要考查了翻折變換(折疊問題)的相關(guān)知識點,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線a∥b,那么∠α的度數(shù)是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若拋物線y=x2﹣2x+c與y軸的交點為(0,﹣3),則下列說法不正確的是(
          A.拋物線開口向上
          B.拋物線的對稱軸是x=1
          C.當(dāng)x=1時,y的最大值為﹣4
          D.拋物線與x軸的交點為(﹣1,0),(3,0)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC ,AB=AC, D AC , BD=BC=AD,∠ABD=_____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,兩個全等的直角三角形重疊在一起,將其中的一個三角形沿著點BC的方向平移到的位置,,,平移距離為6,則陰影部分面積為   

          A. 24 B. 40 C. 42 D. 48

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,如圖,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D為AB邊上一點.求證:BD=AE.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】x,y定義一種新運算T,規(guī)定:T(x,y)=ax+2by-1(其中ab均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T(0,1)=a·0+2b·1-1=2b-1.已知T(1,-1)=-2,T(-3,2)=4.

          (1)求a,b的值;

          (2)利用(1)的結(jié)果化簡求值:(ab)2-(a+2b)·(a-2b)+2a(1+b).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

          方案一:買一件甲種商品就贈送一件乙種商品;

          方案二:按購買金額打八折付款.

          某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.

          (1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

          (2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實惠.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點A(2,0),B(0,4),作△BOC,使△BOC△ABO全等,則點C坐標(biāo)為_____________.(點C不與點A重合)

          查看答案和解析>>

          同步練習(xí)冊答案