日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,對稱軸為直線x=數(shù)學(xué)公式的拋物線經(jīng)過點(diǎn)A(-6,0)和點(diǎn)B(0,4).
          (1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
          (2)設(shè)點(diǎn)E(x,y)是拋物線上的一個動點(diǎn),且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          ①當(dāng)?OEAF的面積為24時,請判斷?OEAF是否為菱形?
          ②是否存在點(diǎn)E,使?OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.•

          解:(1)設(shè)拋物線的解析式為y=a(x+2+k(k≠0),
          則依題意得:a+k=0,a+k=4
          解之得:a=,
          k=-
          即:y=(x+2-,頂點(diǎn)坐標(biāo)為(-,-);

          (2)∵點(diǎn)E(x,y)在拋物線上,且位于第三象限.
          ∴S=2S△OAE=2××0A×(-y)
          =-6y
          =-4(x+2+25 (-6<x<-1);
          ①當(dāng)S=24時,即-4(x+2+25=24,
          解之得:x1=-3,x2=-4
          ∴點(diǎn)E為(-3,-4)或(-4,-4)
          當(dāng)點(diǎn)E為(-3,-4)時,滿足OE=AE,故□OEAF是菱形;
          當(dāng)點(diǎn)E為(-4,-4)時,不滿足OE=AE,故□OEAF不是菱形.
          ②不存在.
          當(dāng)0E⊥AE且OE=AE時,□OEAF是正方形,此時點(diǎn)E的坐標(biāo)為(-3,-3),
          而點(diǎn)E不在拋物線上,故不存在點(diǎn)E,使□OEAF為正方形.
          分析:(1)根據(jù)對稱軸設(shè)拋物線的解析式為y=a(x+2+k,將A、B兩點(diǎn)坐標(biāo)代入,列方程組求a、k的值;
          (2)根據(jù)平行四邊形的性質(zhì)可知S=2S△OAE,△OAE的底為AO,高為E點(diǎn)縱坐標(biāo)的絕對值,由此列出函數(shù)關(guān)系式,①當(dāng)S=24時,由函數(shù)關(guān)系式得出方程,求x的值,再逐一判斷;②不存在,只有當(dāng)0E⊥AE且OE=AE時,□OEAF是正方形,由此求出E點(diǎn)坐標(biāo),判斷E點(diǎn)坐標(biāo)是否在拋物線上.
          點(diǎn)評:本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)已知條件求拋物線解析式,根據(jù)平行四邊形的性質(zhì)表示面積,由特殊平行四邊形的性質(zhì)確定E點(diǎn)坐標(biāo),判斷E點(diǎn)坐標(biāo)是否在拋物線上,確定存在性.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•莒南縣二模)如圖,對稱軸為直線x=-
          72
          的拋物線經(jīng)過點(diǎn)A(-6,0)和點(diǎn)B(0,4).
          (1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
          (2)設(shè)點(diǎn)E(x,y)是拋物線上的一個動點(diǎn),且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          ①當(dāng)?OEAF的面積為24時,請判斷?OEAF是否為菱形?
          ②是否存在點(diǎn)E,使?OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.•

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,對稱軸為直線x=-2的拋物線經(jīng)過A(-3,0)和B(0,-3).
          (1)求拋物線解析式;
          (2)設(shè)點(diǎn)D(m,n)是拋物線上一動點(diǎn),且位于第二象限,四邊形ODAE是以O(shè)A為對角線的平行四邊形.
          ①當(dāng)四邊形ODAE的面積為
          94
          時,請判斷四邊形ODAE是否為菱形?并說明理由;
          ②當(dāng)點(diǎn)E也剛好落在拋物線上時.求m的值;
          (3)設(shè)拋物線與x軸另一交點(diǎn)為C,拋物線上是否存在點(diǎn)P,使得△PBC為直角三角形?若存在,直接寫出點(diǎn)P坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,對稱軸為直線x=
          72
          的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
          (1)求拋物線解析式及頂點(diǎn)D的坐標(biāo);
          (2)設(shè)點(diǎn)E(x,y)是拋物線上位于第四象限內(nèi)一動點(diǎn),將△OAE繞OA的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)E落到點(diǎn)F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          ①當(dāng)四邊形OEAF的面積為24時,請判斷四邊形OEAF的形狀.
          ②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.
          (3)若點(diǎn)P是x軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,請直接寫出滿足條件的所有點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,對稱軸為直線x=
          72
          的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).
          (1)求拋物線解析式及頂點(diǎn)坐標(biāo);
          (2)設(shè)點(diǎn)E(x,y)是拋物線第四象限上一動點(diǎn),四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
          (3)若S=24,試判斷?OEAF是否為菱形;
          (4)若點(diǎn)E在(1)中的拋物線上,點(diǎn)F在對稱軸上,以O(shè)、E、A、F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出點(diǎn)E、F的坐標(biāo);若不能,請說明理由.(第(4)問不寫解答過程,只寫結(jié)論)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,對稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點(diǎn)B、O.
          (1)求拋物線的解析式.
          (2)連接AB,平移AB所在的直線,使其經(jīng)過原點(diǎn)O,得到直線l.點(diǎn)P是l上一動點(diǎn),當(dāng)△PAB的周長最小時,求點(diǎn)P的坐標(biāo).
          (3)當(dāng)△PAB的周長最小時,在直線AB的上方是否存在一點(diǎn)Q,使以A,B,Q為頂點(diǎn)的三角形與△POB相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.(規(guī)定:點(diǎn)Q的對應(yīng)頂點(diǎn)不為點(diǎn)O)

          查看答案和解析>>

          同步練習(xí)冊答案