日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)如圖①,已知直線l1l2,且l3l1,l2分別交于A,B兩點,點P在線段AB上,則∠1,∠2,∠3之間的等量關(guān)系是____

          (2)如圖②,點AB處北偏東40°方向,在C處北偏西45°方向,則∠BAC____°.

          (3)如圖③,∠ABD和∠BDC的平分線交于點E,BEAB于點F,∠1+∠290°,試說明:ABAB,并探究∠2與∠3的數(shù)量關(guān)系.

          【答案】(1)∠1+∠2=∠32853)見解析,∠2+∠390°

          【解析】

          1)作PMAC.根據(jù)平行線間的傳遞性,得PMBD.再由平行線的性質(zhì),得∠1=∠CPM,∠2=∠MPD.所以,∠1+∠2=∠3.2)由題可知∠BAC=∠B+∠C,所以,∠BAC85°.3)由題意,先證明ABAB.再通過角的變換,得到∠BED=∠DAB90°,所以∠3+∠FDE90,最后得到∠2+∠390.

          (1)如答圖,作PMAC

          ACBD,∴PMBD

          ∴∠1=∠CPM,∠2=∠MPD,

          ∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.

          (2)由題可知∠BAC=∠B+∠C.

          ∵∠B40°,∠C45°,

          ∴∠BAC40°45°85°.

          (3)證明:∵BEDE分別平分∠ABD,∠BDC,

          ∴∠1ABD,∠2BDC.

          ∵∠1+∠290°,

          ∴∠ABD+∠BDC180°,

          ABAB.

          DE平分∠BDC

          ∴∠2=∠FDE.

          ∵∠1+∠290°,

          ∴∠BED=∠DAB90°

          ∴∠3+∠FDE90°,

          ∴∠2+∠390°.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分的面積為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,為了檢驗教室里的矩形門框是否合格,某班的四個學(xué)習(xí)小組用三角板和細繩分別測得如下結(jié)果,其中不能判定門框是否合格的是( )

          A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場要經(jīng)營一種新上市的文具,進價為20元/件,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
          (1)寫出商場銷售這種文具,每天所得的銷售利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
          (2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
          (3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案:
          方案A:該文具的銷售單價高于進價且不超過30元;
          方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元.請比較哪種方案的最大利潤更高,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀以下材料:

          對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.

          對數(shù)的定義:一般地,若ax=N(a0,a1),那么x叫做以a為底N的對數(shù),記作:x=logaN.比如指數(shù)式24=16可以轉(zhuǎn)化為4=log216,對數(shù)式2=log525可以轉(zhuǎn)化為52=25.

          我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):loga(MN)=logaM+logaN(a0,a1,M0,N0);理由如下:

          設(shè)logaM=m,logaN=n,則M=am,N=an

          MN=aman=am+n,由對數(shù)的定義得m+n=loga(MN)

          又∵m+n=logaM+logaN

          loga(MN)=logaM+logaN

          解決以下問題:

          (1)將指數(shù)43=64轉(zhuǎn)化為對數(shù)式_____;

          (2)證明loga=logaM﹣logaN(a0,a1,M0,N0)

          (3)拓展運用:計算log32+log36﹣log34=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在邊長為個單位長度的小正方形組成的網(wǎng)格中,、正方形、正方形的頂點均在格點上.

          1)以格點為原點,建立合適的平面直角坐標(biāo)系,使得坐標(biāo)分別為、,則點的坐標(biāo)為______,點的坐標(biāo)為_______

          2)利用面積計算線段________;

          3)點為直線上一動點,求的最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點C出發(fā),按C→B→A的路徑,以2cm每秒的速度運動,設(shè)運動時間為t秒,當(dāng)t___________時,ACP是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點P的坐標(biāo)為2a2+1,則點P所在的象限是____;以方程組 的解為坐標(biāo)的點x,y在平面直角坐標(biāo)系中的位置是__________;在平面直角坐標(biāo)系中,如果mn0,請寫出點m,|n|可能在的所有象限:____________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解下列方程:

          (1)43(x2)x.

          (2)1.

          (3)x.

          查看答案和解析>>