日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•撫順)如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=-x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D.
          (1)求拋物線的解析式;
          (2)在第三象限內(nèi),F(xiàn)為拋物線上一點,以A、E、F為頂點的三角形面積為3,求點F的坐標;
          (3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設運動的時間為t秒,當t為何值時,以P、B、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.
          分析:(1)先由直線AB的解析式為y=x+3,求出它與x軸的交點A、與y軸的交點B的坐標,再將A、B兩點的坐標代入y=-x2+bx+c,運用待定系數(shù)法即可求出拋物線的解析式;
          (2)設第三象限內(nèi)的點F的坐標為(m,-m2-2m+3),運用配方法求出拋物線的對稱軸及頂點D的坐標,再設拋物線的對稱軸與x軸交于點G,連接FG,根據(jù)S△AEF=S△AEG+S△AFG-S△EFG=3,列出關于m的方程,解方程求出m的值,進而得出點F的坐標;
          (3)設P點坐標為(-1,n).先由B、C兩點坐標,運用勾股定理求出BC2=10,再分三種情況進行討論:①∠PBC=90°,先由勾股定理得出PB2+BC2=PC2,據(jù)此列出關于n的方程,求出n的值,再計算出PD的長度,然后根據(jù)時間=路程÷速度,即可求出此時對應的t值;②∠BPC=90°,同①可求出對應的t值;③∠BCP=90°,同①可求出對應的t值.
          解答:解:(1)∵y=x+3與x軸交于點A,與y軸交于點B,
          ∴當y=0時,x=-3,即A點坐標為(-3,0),
          當x=0時,y=3,即B點坐標為(0,3),
          將A(-3,0),B(0,3)代入y=-x2+bx+c,
          -9-3b+c=0
          c=3
          ,
          解得
          b=-2
          c=3
          ,
          ∴拋物線的解析式為y=-x2-2x+3;

          (2)如圖1,設第三象限內(nèi)的點F的坐標為(m,-m2-2m+3),則m<0,-m2-2m+3<0.
          ∵y=-x2-2x+3=-(x+1)2+4,
          ∴對稱軸為直線x=-1,頂點D的坐標為(-1,4),
          設拋物線的對稱軸與x軸交于點G,連接FG,則G(-1,0),AG=2.
          ∵直線AB的解析式為y=x+3,
          ∴當x=-1時,y=-1+3=2,
          ∴E點坐標為(-1,2).
          ∵S△AEF=S△AEG+S△AFG-S△EFG=
          1
          2
          ×2×2+
          1
          2
          ×2×(m2+2m-3)-
          1
          2
          ×2×(-1-m)=m2+3m,
          ∴以A、E、F為頂點的三角形面積為3時,m2+3m=3,
          解得m1=
          -3-
          21
          2
          ,m2=
          -3+
          21
          2
          (舍去),
          當m=
          -3-
          21
          2
          時,-m2-2m+3=-m2-3m+m+3=-3+m+3=m=
          -3-
          21
          2
          ,
          ∴點F的坐標為(
          -3-
          21
          2
          -3-
          21
          2
          );

          (3)設P點坐標為(-1,n).
          ∵B(0,3),C(1,0),
          ∴BC2=12+32=10.
          分三種情況:
          ①如圖2,如果∠PBC=90°,那么PB2+BC2=PC2,
          即(0+1)2+(n-3)2+10=(1+1)2+(n-0)2
          化簡整理得6n=16,解得n=
          8
          3

          ∴P點坐標為(-1,
          8
          3
          ),
          ∵頂點D的坐標為(-1,4),
          ∴PD=4-
          8
          3
          =
          4
          3
          ,
          ∵點P的速度為每秒1個單位長度,
          ∴t1=
          4
          3
          ;
          ②如圖3,如果∠BPC=90°,那么PB2+PC2=BC2,
          即(0+1)2+(n-3)2+(1+1)2+(n-0)2=10,
          化簡整理得n2-3n+2=0,解得n=2或1,
          ∴P點坐標為(-1,2)或(-1,1),
          ∵頂點D的坐標為(-1,4),
          ∴PD=4-2=2或PD=4-1=3,
          ∵點P的速度為每秒1個單位長度,
          ∴t2=2,t3=3;
          ③如圖4,如果∠BCP=90°,那么BC2+PC2=PB2
          即10+(1+1)2+(n-0)2=(0+1)2+(n-3)2,
          化簡整理得6n=-4,解得n=-
          2
          3
          ,
          ∴P點坐標為(-1,-
          2
          3
          ),
          ∵頂點D的坐標為(-1,4),
          ∴PD=4+
          2
          3
          =
          14
          3
          ,
          ∵點P的速度為每秒1個單位長度,
          ∴t4=
          14
          3
          ;
          綜上可知,當t為
          4
          3
          秒或2秒或3秒或
          14
          3
          秒時,以P、B、C為頂點的三角形是直角三角形.
          點評:本題考查了二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求拋物線的解析式,函數(shù)圖象上點的坐標特征,拋物線的頂點坐標和三角形的面積求法,直角三角形的性質(zhì),勾股定理.綜合性較強,難度適中.(2)中將△AEF的面積表示成S△AEG+S△AFG-S△EFG,是解題的關鍵;(3)中由于沒有明確哪一個角是直角,所以每一個點都可能是直角頂點,進行分類討論是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          (2013•撫順)如圖是由八個小正方形搭成的幾何體的俯視圖,小正方形中的數(shù)字表示該位置上的小正方體的個數(shù),則這個幾何體的左視圖是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•撫順)如圖,直線l1、l2被直線l3、l4所截,下列條件中,不能判斷直線l1∥l2的是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•撫順)如圖,在平面直角坐標系中,點A、B、C的坐標分別是(-1,-1)、(0,2)、(2,0),點P在y軸上,且坐標為(0,-2).點P關于點A的對稱點為P1,點P1關于點B的對稱點為P2,點P2關于點C的對稱點為P3,點P3關于點A的對稱點為P4,點P4關于點B的對稱點為P5,點P5關于點C的對稱點為P6,點P6關于點A的對稱點為P7…,按此規(guī)律進行下去,則點P2013的坐標、是
          (2,-4)
          (2,-4)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•撫順)如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點D,DE⊥BC,垂足為E.
          (1)求證:DE是⊙O的切線;
          (2)若DG⊥AB,垂足為點F,交⊙O于點G,∠A=35°,⊙O半徑為5,求劣弧DG的長.(結(jié)果保留π)

          查看答案和解析>>

          同步練習冊答案