日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18.如圖1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=$\frac{1}{2}$BC,點(diǎn)N在BC邊上,連接AN,CM,點(diǎn)E,F(xiàn),D,G分別為AC,AN,MN,CM的中點(diǎn),連接EF,F(xiàn)D,DG,EG.
          (1)判斷四邊形EFDG的形狀,并證明;
          (2)如圖2,將圖1中的△MBN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,其他條件不變,猜想此時(shí)四邊形EFDG的形狀,并證明.

          分析 (1)四邊形EFDG是平行四邊形,理由為:如圖1,連接AM,由E、F、G、H分別為中點(diǎn),利用利用中位線定理得到兩組對(duì)邊相等,即可得證;
          (2)四邊形EFDG為正方形,理由為:如圖2,連接CN,AM,分別交EF、CN于點(diǎn)L與K,由CB-BM求出CM的長(zhǎng),得到CM=BN,再由一對(duì)直角相等,AC=BC,利用SAS得到三角形ACM與三角形CBN全等,利用全等三角形對(duì)應(yīng)邊、對(duì)應(yīng)角相等得到AM=CN,∠CAM=∠BCN,利用同角的余角相等,求出∠AKC為直角,利用兩組對(duì)邊平行的四邊形為平行四邊形得到四邊形EFDG為平行四邊形,再由一個(gè)內(nèi)角為直角,且鄰邊相等即可得證.

          解答 解:(1)四邊形EFDG是平行四邊形,
          理由:如圖1,連接AM,
          ∵E、F、D、G分別為AC、AN、MN、CM的中點(diǎn),
          ∴FD=EG=$\frac{1}{2}$AM,EF=GD=$\frac{1}{2}$CN,
          ∴四邊形EFDG是平行四邊形;

          (2)四邊形EFDG是正方形,
          理由:如圖2,連接CN,AM,分別交EF、CN于點(diǎn)L與K,
          由已知得:點(diǎn)M和點(diǎn)D分別落在BC與AB邊上,
          ∴CM=CB-BM=4-2=2,
          ∴CM=BN,
          ∵∠ACM=∠CBN=90°,AC=BC,
          ∴△ACM≌△CBN(SAS),
          ∴AM=CN,∠CAM=∠BCN,
          ∵∠ACK+∠KCM=90°,
          ∴∠ACK+∠CAK=90°,
          在△ACK中,∠AKC=180°-(∠ACK+∠CAK)=180°-90°=90°,
          由(1)可得EG∥AM∥FD,EF∥CN∥GD,
          ∴四邊形EFDG是平行四邊形,
          ∴∠GEL=∠ELA=∠AKC=90°,
          ∴四邊形EFDG是矩形,
          ∵EG=$\frac{1}{2}$AM=$\frac{1}{2}$CN=EF,
          ∴四邊形EFDG是正方形.

          點(diǎn)評(píng) 此題考查的是旋轉(zhuǎn)的性質(zhì),涉及的知識(shí)有:平行四邊形的判定與性質(zhì),正方形的判定,全等三角形的判定與性質(zhì),銳角三角函數(shù)定義,三角形中位線定理,熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          19.兩個(gè)相似多邊形的面積之比為5,周長(zhǎng)之比為m,則$\frac{5}{m}$為( 。
          A.1B.$\frac{\sqrt{5}}{5}$C.$\sqrt{5}$D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          9.已知x-y=2,求7-x+y-(y-x)4的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          6.116°17′的補(bǔ)角等于63°43′.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          13.觀察如圖相應(yīng)推理,其中正確的是( 。
          A.
          ∵$\widehat{AD}$=$\widehat{BC}$
          ∴AB=CD
          B.
          ∵$\widehat{AB}$的度數(shù)為40°
          ∴∠AOB=80°
          C.
          ∵∠AOB=∠A′OB′
          ∴$\widehat{AB}$=$\widehat{A′B′}$
          D.
          ∵M(jìn)N垂直平分AD
          ∴$\widehat{MA}$=$\widehat{ME}$

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          3.如圖,CE⊥AB,DF⊥AB,垂足分別為E、F,AC∥DB,且AC=BD,那么Rt△AEC≌Rt△BFD的理由是(  )
          A.SSSB.AASC.SASD.HL

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          10.計(jì)算與化簡(jiǎn):
          (1)6+(-$\frac{1}{2}$)-2+1.5;
          (2)(-2)2×5-(-2)3÷4
          (3)7a+3a2-2a-a2+3;
          (4)(2a-b)-(2b-3a)-2(a-2b)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          7.解下列方程:
          (1)5x-3=3x+9
          (2)$\frac{3x-7}{2}$-$\frac{1+x}{3}$=1
          (3)1+$\frac{x-1}{2}$=$\frac{x+2}{6}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          8.若等腰三角形的周長(zhǎng)為28cm,一邊為10cm,則腰長(zhǎng)為( 。
          A.10cmB.9cmC.10cm或9cmD.8cm

          查看答案和解析>>

          同步練習(xí)冊(cè)答案