日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,∠ACB90°,CACB,點(diǎn)OABC的內(nèi)部,⊙O經(jīng)過(guò)B,C兩點(diǎn),交AB于點(diǎn)D,連接CO并延長(zhǎng)交AB于點(diǎn)G,以GDGC為鄰邊作GDEC

          1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由.

          2)若點(diǎn)B的中點(diǎn),⊙O的半徑為2,求的長(zhǎng).

          【答案】(1)DE是⊙O的切線,理由見(jiàn)解析;(2π

          【解析】

          (1) 連接OD,由題意可得ABC45°,再結(jié)合圓周角定理可得COD2∠ABC90°,再由平行四邊形GDEC可得,EDO+∠COD180°,即EDO=90°,即可完成證明;

          (2) 連接OB,可得點(diǎn)B的中點(diǎn),進(jìn)一步說(shuō)明BOCBOD,在確定∠BOC的度數(shù),最后用弧長(zhǎng)公式求解即可·

          解:(1DEO的切線;理由如下:

          連接OD,

          ∵∠ACB90°,CACB,

          ∴∠ABC45°,

          ∴∠COD2∠ABC90°,

          四邊形GDEC是平行四邊形,

          DECG

          ∴∠EDO+∠COD180°,

          ∴∠EDO90°,

          ODDE,

          DEO的切線;

          2)連接OB,

          點(diǎn)B的中點(diǎn),

          ,

          ∴∠BOCBOD,

          ∵∠BOC+∠BOD+∠COD360°

          ∴∠BOC==135°

          的長(zhǎng)=π

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】仙桃是遂寧市某地的特色時(shí)令水果.仙桃一上市,水果店的老板用2400元購(gòu)進(jìn)一批仙桃,很快售完;老板又用3700元購(gòu)進(jìn)第二批仙桃,所購(gòu)件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.

          1)第一批仙桃每件進(jìn)價(jià)是多少元?

          2)老板以每件225元的價(jià)格銷(xiāo)售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷(xiāo).要使得第二批仙桃的銷(xiāo)售利潤(rùn)不少于440元,剩余的仙桃每件售價(jià)至少打幾折?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了了解某校初三學(xué)生每周平均閱讀時(shí)間的情況,隨機(jī)抽查了該校初三m名學(xué)生,對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

          根據(jù)以上信息回答下列問(wèn)題:

          1)求m的值;

          2)求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為3小時(shí)的扇形圓心角的度數(shù);

          3)求出這組數(shù)據(jù)的平均數(shù).(精確到01

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+ca、b、c為常數(shù),a≠0)的夢(mèng)想直線;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其夢(mèng)想三角形.已知拋物線y=-與其夢(mèng)想直線交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C

          1)填空:該拋物線的夢(mèng)想直線的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______

          2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將ACMAM所在直線為對(duì)稱(chēng)軸翻折,點(diǎn)C的對(duì)稱(chēng)點(diǎn)為N,若AMN為該拋物線的夢(mèng)想三角形,求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)A3,2)和點(diǎn)Mm,n)都在反比例函數(shù)yx0)的圖象上.

          1k的值為  ;

          2)當(dāng)m4,求直線AM的解析式;

          3)當(dāng)m3時(shí),過(guò)點(diǎn)MMPx軸,垂足為P,過(guò)點(diǎn)AABy軸,垂足為B,直線AMx軸與點(diǎn)Q,試說(shuō)明四邊形ABPQ是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商店銷(xiāo)售一種商品,經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),該商品的周銷(xiāo)售量y(件)是售價(jià)x(元/件)的一次函數(shù).其售價(jià)、周銷(xiāo)售量、周銷(xiāo)售利潤(rùn)w(元)的三組對(duì)應(yīng)值如表:

          售價(jià)x(元/件)

          50

          60

          80

          周銷(xiāo)售量y(件)

          100

          80

          40

          周銷(xiāo)售利潤(rùn)w(元)

          1000

          1600

          1600

          注:周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)﹣進(jìn)價(jià))

          1)求y關(guān)于x的函數(shù)解析式_____

          2)當(dāng)售價(jià)是_____/件時(shí),周銷(xiāo)售利潤(rùn)最大.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線y=ax2+bx+ca≠0)的對(duì)稱(chēng)軸為直線x=-1,且拋物線經(jīng)過(guò)A1,0),C0,3)兩點(diǎn),與x軸交于點(diǎn)B

          1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;

          2)在拋物線的對(duì)稱(chēng)軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);

          3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

          (1求拋物線的解析式;(2過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

          (3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知A1,A2A3是拋物線yx2+1x0)上的三點(diǎn),且A1,A2,A3三點(diǎn)的橫坐標(biāo)為連續(xù)的整數(shù),連接A1A3,過(guò)A2A2Qx軸于點(diǎn)Q,交A1A3于點(diǎn)P,則線段PA2的長(zhǎng)為__

          查看答案和解析>>

          同步練習(xí)冊(cè)答案