【題目】如圖,在△ABC中,∠ACB=90°,CA=CB,點(diǎn)O在△ABC的內(nèi)部,⊙O經(jīng)過(guò)B,C兩點(diǎn),交AB于點(diǎn)D,連接CO并延長(zhǎng)交AB于點(diǎn)G,以GD,GC為鄰邊作GDEC.
(1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由.
(2)若點(diǎn)B是的中點(diǎn),⊙O的半徑為2,求
的長(zhǎng).
【答案】(1)DE是⊙O的切線,理由見(jiàn)解析;(2)π
【解析】
(1) 連接OD,由題意可得∠ABC=45°,再結(jié)合圓周角定理可得∠COD=2∠ABC=90°,再由平行四邊形GDEC可得,∠EDO+∠COD=180°,即∠EDO=90°,即可完成證明;
(2) 連接OB,可得點(diǎn)B是的中點(diǎn),進(jìn)一步說(shuō)明∠BOC=∠BOD,在確定∠BOC的度數(shù),最后用弧長(zhǎng)公式求解即可·
解:(1)DE是⊙O的切線;理由如下:
連接OD,
∵∠ACB=90°,CA=CB,
∴∠ABC=45°,
∴∠COD=2∠ABC=90°,
∵四邊形GDEC是平行四邊形,
∴DE∥CG,
∴∠EDO+∠COD=180°,
∴∠EDO=90°,
∴OD⊥DE,
∴DE是⊙O的切線;
(2)連接OB,
∵點(diǎn)B是的中點(diǎn),
∴,
∴∠BOC=∠BOD,
∵∠BOC+∠BOD+∠COD=360°,
∴∠BOC==135°
∴的長(zhǎng)=
=
π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仙桃是遂寧市某地的特色時(shí)令水果.仙桃一上市,水果店的老板用2400元購(gòu)進(jìn)一批仙桃,很快售完;老板又用3700元購(gòu)進(jìn)第二批仙桃,所購(gòu)件數(shù)是第一批的倍,但進(jìn)價(jià)比第一批每件多了5元.
(1)第一批仙桃每件進(jìn)價(jià)是多少元?
(2)老板以每件225元的價(jià)格銷(xiāo)售第二批仙桃,售出80%后,為了盡快售完,剩下的決定打折促銷(xiāo).要使得第二批仙桃的銷(xiāo)售利潤(rùn)不少于440元,剩余的仙桃每件售價(jià)至少打幾折?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某校初三學(xué)生每周平均閱讀時(shí)間的情況,隨機(jī)抽查了該校初三m名學(xué)生,對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問(wèn)題:
(1)求m的值;
(2)求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為3小時(shí)的扇形圓心角的度數(shù);
(3)求出這組數(shù)據(jù)的平均數(shù).(精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“夢(mèng)想直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“夢(mèng)想三角形”.已知拋物線y=-與其“夢(mèng)想直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“夢(mèng)想直線”的解析式為______,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______.
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱(chēng)軸翻折,點(diǎn)C的對(duì)稱(chēng)點(diǎn)為N,若△AMN為該拋物線的“夢(mèng)想三角形”,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(3,2)和點(diǎn)M(m,n)都在反比例函數(shù)y=(x>0)的圖象上.
(1)k的值為 ;
(2)當(dāng)m=4,求直線AM的解析式;
(3)當(dāng)m>3時(shí),過(guò)點(diǎn)M作MP⊥x軸,垂足為P,過(guò)點(diǎn)A作AB⊥y軸,垂足為B,直線AM交x軸與點(diǎn)Q,試說(shuō)明四邊形ABPQ是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售一種商品,經(jīng)市場(chǎng)調(diào)査發(fā)現(xiàn),該商品的周銷(xiāo)售量y(件)是售價(jià)x(元/件)的一次函數(shù).其售價(jià)、周銷(xiāo)售量、周銷(xiāo)售利潤(rùn)w(元)的三組對(duì)應(yīng)值如表:
售價(jià)x(元/件) | 50 | 60 | 80 |
周銷(xiāo)售量y(件) | 100 | 80 | 40 |
周銷(xiāo)售利潤(rùn)w(元) | 1000 | 1600 | 1600 |
注:周銷(xiāo)售利潤(rùn)=周銷(xiāo)售量×(售價(jià)﹣進(jìn)價(jià))
(1)求y關(guān)于x的函數(shù)解析式_____;
(2)當(dāng)售價(jià)是_____元/件時(shí),周銷(xiāo)售利潤(rùn)最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線x=-1,且拋物線經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸x=-1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱(chēng)軸x=-1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).
(1)求拋物線的解析式;(2)過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A1,A2,A3是拋物線y=x2+1(x>0)上的三點(diǎn),且A1,A2,A3三點(diǎn)的橫坐標(biāo)為連續(xù)的整數(shù),連接A1A3,過(guò)A2作A2Q⊥x軸于點(diǎn)Q,交A1A3于點(diǎn)P,則線段PA2的長(zhǎng)為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com